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Abstract
In this review, we consider a quasi-classical method applicable to integrable
field theories which is based on a classical integrable structure—the algebraic
curve. We apply it to the Green–Schwarz superstring on the AdS5 × S5 space.
We show that the proposed method reproduces perfectly the earlier results
obtained by expanding the string action for some simple classical solutions.
The construction is explicitly covariant and is not based on a particular
parameterization of the fields and as a result is free from ambiguities. On
the other hand, the finite size corrections in some particularly important scaling
limit are studied in this paper for a system of Bethe equations. For the general
superalgebra su(N |K), the result for the 1/L corrections is obtained. We find
an integral equation which describes these corrections in a closed form. As
an application, we consider the conjectured Beisert–Staudacher (BS) equations
with the Hernandez–Lopez dressing factor where the finite size corrections
should reproduce quasi-classical results around a general classical solution.
Indeed, we show that our integral equation can be interpreted as a sum of all
physical fluctuations and thus prove the complete one-loop consistency of the
BS equations. We demonstrate that any local conserved charge (including the
AdS energy) computed from the BS equations is indeed given at one loop by
the sum of the charges of fluctuations with an exponential precision for large S5

angular momentum of the string. As an independent result, the BS equations in
an su(2) sub-sector were derived from Zamolodchikovs’s S-matrix. The paper
is based on the author’s PhD thesis.
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1. Introduction

The history of the quantum mechanics starts from Louis de Broglie, who suggested that the free
particles could be described in terms of waves, like photons. This suggestion was brilliantly
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confirmed by the observed interference effects in the scattering of electrons from crystals.
The next step was to describe the particles in external potential. This problem was solved
by Schrödinger, who discovered the non-relativistic wave equation. However, its relativistic
generalization had a puzzling property of negative densities and the description of systems of
interacting relativistic particles turned out to be inconsistent.

After discovering the field theory, a number of old problems were resolved or at least
clarified but new difficulties of divergences in perturbative theory appeared. However, to
describe all physical phenomena, which can be observed on earth, these difficulties can be
overcome. The complete description of the existing experimental data so far is given by the
standard model. The only ingredient of the standard model, which still lacks experimental
support, is the Higgs boson particle. One can, therefore, conclude that at this moment there is
no direct experimental need to go beyond the standard model.

On the other hand, there are a number of theoretical reasons to go beyond the standard
model. The standard model is a relativistic quantum field theory, which describes three
fundamental interactions existing in nature. The consistent quantum theory, which describes
all the four known interactions at the same time, does not exist today. One of the main problems
of today’s physics is the integration of quantum mechanics and general relativity which leads
to unification of the gravitational interaction with the others. Until now, the most reasonable
and the only existing candidate has been string theory. In this theory, several problems of the
quantum gravity seem to be resolved. In particular, the divergences are regularized on the
Planck scale in some natural way. Unfortunately, string theory can be formulated consistently
only in ten-dimensional spacetime and it seems that there are too many ways to compactify it
to the four dimensions of the real world.

Besides the problem of finding the ‘theory of everything’, there are many open questions
inside the standard model. In particular, the standard model describes the strong interaction,
which is indeed the strongest force of nature. It is responsible for the major part of baryon
mass and thus for the major part of all masses on the earth. Strong interactions bind
nucleons in nuclei which, being dressed with electrons and bound into molecules by the
much weaker electro-magnetic force, give rise to a variety of chemical properties. The part of
the standard model, describing the strong interaction, quantum chromodynamics (QCD), has
quarks and gluons as fundamental degrees of freedom. However, understanding the physical
world also implies understanding how these fundamental constituents interact and bring into
existence the entire variety of physical objects composing the universe. One of the most
important features of the strong interactions—quark confinement—is still a mystery for the
theorists.

String theory from its very origin is closely related to the theory of the strong interactions.
It was first formulated as a theory of hadrons. However, after invention of QCD, the string
research was shifted to the Planck scale. String theory in the theory of the strong interactions
converted into a phenomenological tool. Nevertheless, the hope that the gauge theories with
the SU(N) gauge group can be described by strings came from the large N ’t Hooft limit. In
this limit, the Feynman graph with non-planar topology is suppressed by the powers of N. Each
graph carries a topological factor Nχ , where χ is the Euler characteristic of the graph. This
strongly reminds some string theory with 1/N coupling. Based on this, it was conjectured
that in this limit QCD is described by some string theory. This idea is also supported by the
experimental fact that hadrons approximately lie on linear Regge trajectories.

Then it was understood that the string theory dual to a particular four-dimensional gauge
theory lives on a curved, higher dimensional manifold [1]. The formulation of this duality
could be made precise in the case of N = 4 super-Yang–Mills (SYM). Maldacena conjectured
that it is dual to the type IIB string theory on AdS5 × S5 [2–4]. A great technical advantage of

3



J. Phys. A: Math. Theor. 42 (2009) 254004 N Gromov

the string side of duality is that string theory in the tree approximation is a two-dimensional
σ -model and the string interactions are not relevant in the planar ’t Hooft limit. On the
other hand, there are numerous examples of the exactly solvable two-dimensional σ -models
possessing an integrability. This gives us some hope that the N = 4 super Yang–Mills theory
is the first interacting four-dimensional gauge theory which could be solved at least in the
planar ’t Hooft limit.

In support of this hope, the one-loop integrability was discovered in N = 4 SYM in [5]
for the bosonic sector1 where the dilatation operator was identified with the Hamiltonian of
an integrable one-dimensional spin chain. Soon after, the classical integrability of the full
superstring σ -model on AdS5 ×S5 was demonstrated in [8]. We will focus on this construction
of major importance in the following section.

In this work, we will shortly review the main ingredients of applications of integrability
to the AdS/CFT correspondence. We will then restrict ourselves to the problems related to
finite size effects in integrable spin chains and quantum effects from the string side of the
duality. We develop quasi-classical methods for the computation of one-loop corrections to
the classical spectrum of free strings in a curved integrable background making use of the
underlying integrable structures such as algebraic curves (section 3). From the spin-chain side,
we describe a method of finding generic finite size corrections to the scaling limit described
in section 2. We then show that the string and spin chain calculations match generically once
the dressing phase chosen correctly (section 4).

In section 5, we also examine the possibility of obtaining the spectrum of AdS/CFT from
some completely relativistic model by restricting ourselves to a particular subspace of the
spectrum and integrating out extra degrees of freedom. This is done on the example of the S3 ×
R sub-sector of the full AdS5 × S5 string. This approach has an advantage that the spectrum
is given by a simple set of Bethe equations and the complicated dressing phase in the effective
Bethe equations simply stems from the existence of the extra hidden degrees of freedom. We
conclude in section 6.

1.1. Integrability

The Green–Schwarz (GS) superstring on AdS5 × S5 can be represented as a coset model with
the target super-space [9]

PSU(2, 2|4)

SP (2, 2) × SP (4)

whose bosonic part is SU(2,2)

SP (2,2)
× SU(4)

SP (4)
, which is precisely AdS5 × S5.

The matrix superalgebra su(2, 2|4) is spanned by the 8 × 8 supertraceless supermatrices

M =
(

A | B

C | D

)
,

where A and D belong to u(2, 2) and u(4) respectively while the fermionic components are
related by

C = B†
(

I2×2 0
0 −I2×2

)
.

1 Integrable spin chains have been discovered in (non-supersymmetric) gauge theories earlier [6, 7].
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The psu(2, 2|4) superalgebra is the quotient of this algebra by the matrices proportional to the
identity. Then we note that the psu(2, 2|4) algebra enjoys the automorphism

� ◦ M =
(

EAT E −ECT E

EBT E EDT E

)
, E =

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠ ,

such that �4 = 1. This automatically implies that the algebra is endowed with a Z4

grading. This means that any algebra element can be decomposed into
∑3

i=0 M(i), where
� ◦ M(n) = inM(n). More explicitly,

M(0,2) = 1
2

(
A ± EAT E 0

0 D ± EDT E

)

M(1,3) = 1
2

(
0 B ± iECT E

C ∓ iEBT E 0

) . (1)

We see that the M(0) elements belong, by definition, to the denominator algebra sp(2, 2)×sp(4)

of the coset. Then, the remaining bosonic elements, M(2), orthogonal to the former, generate
the (orthogonal) complement of sp(2, 2) × sp(4) in su(2, 2) × su(4).

The Metsaev–Tseytlin action for the GS superstring in AdS5 × S5 is then given in terms
of the algebra current

J = −g−1 dg, (2)

where g(σ, τ ) is a group element of PSU(2, 2|4), by [10]

S =
√

λ

4π

∫
str(J (2) ∧ ∗J (2) − J (1) ∧ J (3)), (3)

Besides the obvious global PSU(2, 2|4) left multiplication symmetry the action (3) possesses
a local gauge symmetry, g → gH with H ∈ SP (2, 2) × SP (4), under which

J (i) → H−1J (i)H, i = 1, 2, 3,

while J (0) transforms as a connection. The equations of motion following from (3)
are equivalent to the conservation of the Noether current associated with the global left
multiplication symmetry

d ∗ k = 0, (4)

where k = gKg−1 and K = J (2) + 1
2 ∗ J (1) − 1

2 ∗ J (3).
For a purely bosonic representative g, we can write

g =
(
Q | 0

0 | R
)

,

where R ∈ SU(4) and Q ∈ SU(2, 2). Then we see that U ≡ RERT is invariant under
the gauge transformation U → RHEHT RT = U for H ∈ SP (4) and thus is a good
parameterization of

SU(4)/SP (4) ∼ S5.

In the same way, V ≡ QEQT describes the AdS5 space. It is instructive to define the
embedding coordinates u and v by the simple relations

uj
S
j = U, vj
A

j = V , (5)
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where 
S and 
A are the gamma matrices of SO(6) and SO(4, 2) respectively. By
construction, these coordinates will automatically satisfy

1 = u2
6 + u2

5 + u2
4 + u2

3 + u2
2 + u2

1, 1 = v2
6 + v2

5 − v2
4 − v2

3 − v2
2 − v2

1 . (6)

Then the bosonic part of the action can be expressed in the usual nonlinear σ model form:

Sb =
√

λ

4π

∫ 2π

0
dσ

∫
dτ

√
hhμν(∂μu · ∂νu − ∂μv · ∂νv).

One can also expand the action in powers of fermions. It is convenient to use the following
parameterization of the PSU(2, 2|4) group element [11]:

g = exp

(
0 | θ

θ̄ | 0

)
×

(
Q | 0

0 | R
)

. (7)

In this parameterization, the fermionic part of the action reads as

Sf =
√

λ

8π

∫
d2σ

√
hhμν tr4[V ∂μV̄ (θ∂ν θ̄ − ∂νθ θ̄) + U∂μŪ(∂ν θ̄θ − θ̄∂νθ)]

± i

√
λ

8π

∫
d2σ εμν tr4[V ∂μθ̄ t Ū∂ν θ̄ + ∂μθU∂νθ

t V̄ ] + O(θ4). (8)

1.1.1. Integrability and algebraic curve. As follows from the equations of motion and the
flatness condition

dJ − J ∧ J = 0,

the connection

A(x) = J (0) +
x2 + 1

x2 − 1
J (2) − 2x

x2 − 1
(∗J (2) − ) +

√
x + 1

x − 1
J (1) +

√
x − 1

x + 1
J (3) (9)

is flat for any complex number x [8]. This is the crucial observation which indicates the model
to be (at least classically) integrable. Indeed, we can define the monodromy matrix

�(x) = Pexp
∮

γ

A(x), (10)

where γ is any path starting and ending at some point (σ, τ ) and wrapping the worldsheet
cylinder once. Since the flatness of the connection ensures path independence, we can choose
γ to be the constant τ path. Moreover, placing this loop at some other value of τ just
amounts to a similarity transformation of the monodromy matrix. Thus, we conclude that
the eigenvalues of �(x) are time independent. Since they depend on a generic complex
number x, we have obtained in this way an infinite number of conserved charges thus hinting
integrability. Usually, one also needs to prove that the conserved charges are local and that
they are in convolution with each other to insure integrability below classical theory (for more
details, see [12, 13]).

Let us construct the algebraic curve of Beisert et al [14], which gives the classification of
the classical motions of the superstring on AdS5 × S5. We will argue below that the action
variables are represented in a transparent way in terms of the algebraic curve and thus give a
good starting point for the quasi-classical quantization of the superstring action.

To proceed, we note that under periodic SP (2, 2) × SP (4) gauge transformations the
monodromy matrix transforms by a simple similarity transformation so that the eigenvalues
are also gauge invariant. We denote them as follows:

{eip̂1 , eip̂2 , eip̂3 , eip̂4 | eip̃1 , eip̃2 , eip̃3 , eip̃4}.
6
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Figure 1. The eight sheets of the Riemann surface of the ‘finite gap’ method. The sheets could be
connected by the cuts or have synchronized poles. The surface is also restricted by the x → 1/x

symmetry. The singularities outside the unit circle are also reflected inside the unit circle.

In the rest of this section, we shall review the results of [14] and analyze the analytical
properties of the quasi-momenta p̂ and p̃. The eigenvalues are the roots of the characteristic
polynomial equation and thus they define an eight-sheet Riemann surface. These sheets
are connected by several cuts—see figure 1—whose branch points are the loci where the
eigenvalues of the monodromy matrix become equal. The quasi-momenta can jump by a
multiple of 2π at points connected by a cut2. For example, for a cut going from the first to the
second sheet, we will have

p̂+
1 − p̂−

2 = 2πn, x ∈ C 1̂2̂
n ,

where p̃± stands for the value of the quasi-momenta immediately above/below the cut. This
integer n, together with the filling fraction we shall introduce in following section, labels each
of the cuts. Generically, we can summarize all equations as

p+
i − p−

j = 2πnij , x ∈ Cij
n , (11)

where the indices i and j take values

i = 1̃, 2̃, 1̂, 2̂, j = 3̃, 4̃, 3̂, 4̂, (12)

and we denote

p1̃,2̃,3̃,4̃ ≡ p̃1,2,3,4, p1̂,2̂,3̂,4̂ ≡ p̂1,2,3,4. (13)

For each cut, we also associate the filling fraction

Sij = ±
√

λ

8π2i

∮
Cij

(
1 − 1

x2

)
pi(x) dx (14)

obtained by integrating the quasi-momenta around the square root cut. As before, the indices
run over (12) and we should chose the plus sign for i = 1̂, 2̂ and the minus sign for the
remaining excitations with i = 1̃, 2̃. Let us explain why we chose to integrate the quasi-
momenta p(x) around the cut with the seemingly mysterious 1 − 1/x2 weight. It was pointed
out in [14, 15] and shown in [16] that these filling fractions are the action variables of the
theory. From the AdS/CFT correspondence, these filling fractions are also expected to be
integers since they correspond to an integer number of Bethe roots [18, 19]. Indeed, the
likely existence of the Bethe ansatz description [20, 21] of the AdS5 × S5 superstring also

2 Note that the derivative of the quasi-momenta is a single-valued function on the Riemann surface while p(x) is not.
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implies this pole structure of the exact quasi-momentum in a semi-classical limit. Moreover, in
section 5 where the S5 sub-sector is studied from the ‘bootstrap’ point of view we will clearly
see that the quasi-momenta p(z) coming from the quantum Bethe ansatz equations (BAEs)
appears in the usual form

∮
p(z) dz, for the Zhukovsky variable z = x + 1/x. Thus, (14) is

the good starting point for the string quasi-classical quantization.
From (1) and (9), it follows that

C−1�(x)C = �−ST (1/x), C =
(

E | 0

0 | −E

)
,

which translates into the inversion symmetry

p̃1,2(x) = −2πm − p̃2,1(1/x)

p̃3,4(x) = +2πm − p̃4,3(1/x) (15)

p̂1,2,3,4(x) = −p̂2,1,4,3(1/x)

for the quasi-momenta3.
The singularities of the connection at x = ±1 result in simple poles for the quasi-momenta.

These singularities come from the current J (2) in (9). This current is supertraceless because
it belongs to psu(2, 2|4) and so is its square due to the Virasoro constraints following from
the variation of the action with respect to the worldsheet metric. Together with the inversion
symmetry, this forces the various residues to organize as follows:

{p̂1, p̂2, p̂3, p̂4 | p̃1, p̃2, p̃3, p̃4} � {α±, α±, β±, β±|α±, α±, β±, β±}
x ± 1

, (16)

i.e. the residues at these points are synchronized and must be the same for the S5 and the AdS5

quasi-momenta p̂i and p̃i respectively. This is the crucial role of the Virasoro constraints
which will be of utmost importance in the remaining of this section.

Finally, for large x, one has

Aσ � −g−1

(
∂σ +

2

x
kτ

)
g,

where k, defined below (4), is the Noether current associated with the left global symmetry.
Thus, from the behavior at infinity we can read the conserved global charges4 [14, 25]⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p̂1

p̂2

p̂3

p̂4

p̃1

p̃2

p̃3

p̃4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 2π

x
√

λ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+E − S1 + S2

+E + S1 − S2

−E − S1 − S2

−E + S1 + S2

+J1 + J2 − J3

+J1 − J2 + J3

−J1 + J2 + J3

−J1 − J2 − J3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

The finite gap method allow us to build, at least implicitly, classical solutions of the
nonlinear equations of motion from the analytical properties of the quasi-momenta5.

3 Note that for p̂, there is no 2πm imposed by requiring absence of time windings [14, 24].
4 These are the bosonic charges, the ones which are present for a classical solution. Later we shall consider all kind
of fluctuations, including the fermionic ones. Then we shall slightly generalize this expression to (182).
5 For the inverse problem of recovering the solutions from the algebraic curve, see the monographs [26, 27] for the
general formalism and [16] where this is carried over in the context of string theory for the classical bosonic string in
R × S3 ⊂ AdS5 × S5 described by the KMMZ algebraic curve [18].

8
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As we shall see in section 3, the algebraic curve can also be turned into a powerful tool to
study the quantum spectrum, i.e. the energy level spacing, for energies close to that of a given
classical string solution.

Integrability from the string side appears in the classical theory and its essence is contained
in the algebraical curve. From the gauge side of the duality, the integrability shows up in the
study of the anomalous dimensions of the long operators, where the mixing matrix acts on
the single trace operators as a spin-chain Hamiltonian. An important tool in studying the
integrable spin chains is the Bethe ansatz reviewed in the following sections.

1.2. Bethe ansatz equation

In 1931 Hans Bethe presented a method for obtaining the exact eigenvalues and eigenvectors
of the one-dimensional spin-1/2 Heisenberg model, a linear array of electrons with uniform
interaction between nearest neighbors. Bethe’s parameterization of the eigenvectors, the
Bethe ansatz, has become influential to an extent not imagined at the time. Today, many other
systems are known to be solvable by some variant of the Bethe ansatz, and the method has been
generalized and expanded far beyond the calculational tool it was originally. In particular, it
seems to be a key ingredient in the AdS/CFT duality [2–4] between N = 4 SYM and type
IIB superstring theory on AdS5 × S5.

It is very instructive to follow Bethe’s original work to understand the physics beyond
the algebraical constructions. The spin-1/2 Heisenberg spin chain is described in terms of the
spin operators σ̂n by the Hamiltonian

H = −2
L∑

n=1

(
σ̂n · σ̂n+1 − 1

4

)
(18)

with periodic boundary conditions σ̂L+1 = σ̂1. H acts on a Hilbert space of dimension 2L

spanned by the orthogonal basis vectors |σ1 . . . σL〉, where each σn is ↑ or ↓.
The ferromagnetic state |F 〉 = |↑ · · · ↑〉 is obviously an eigenstate with zero energy. To

diagonalize the sector with one spin flipped, we can use the translational symmetry, which
implies the plane wave form of the eigenstates

|p〉 =
L∑

n=1

eipn|n〉, (19)

where |n〉 is the ferromagnetic state with the nth spin flipped. We can also express it as
|n〉 = σ̂−

n |F 〉. Since the states |p〉 with Lp = 2πm,m = 0, . . . , L − 1, constitute the basis
in the sector with one flipped spin they are automatically eigenstates of the Hamiltonian with
eigenvalues

E = 2(1 − cos p); (20)

one can also use the parameterization u = 1
2 cot p

2 of the momentum of the excitation. We
will call this new quantity u—the Bethe root. In the new parameterization, one has

E = 1

u2 + 1/4
. (21)

Let us consider two excitations (or magnons). When the two flipped spins are far from
each other, the Hamiltonian acts on them independently and so it is natural to assume the plane
wave behavior of the wavefunction

|ψ〉 =
∑

1�n1<n2�L

ei(p1n1+p2n2)σ̂−
n1

σ̂−
n2

|F 〉 + A
∑

1�n2<n1�L

ei(p1n1+p2n2)σ̂−
n1

σ̂−
n2

|F 〉, (22)

9
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where the second term represents the result of the scattering of one excitation on another.
Acting on this state by the Hamiltonian, one finds

A = −ei(p1+p2) + 1 − 2eip2

ei(p1+p2) + 1 − 2eip1
= u1 − u2 − i

u1 − u2 + i
; (23)

we see that the scattering phase take a nice form in terms of u’s. The periodicity of the
wavefunction implies

A eip1L = 1, eip2L = A (24)

or (
ui + i/2

ui − i/2

)L

=
K∏

j �=i

ui − uj + i

ui − uj − i
, i = 1, . . . , K, (25)

with K = 2. Increasing further the number of excitations will simply lead to the same equation
with K equal to the number of the magnons. This set of the equations is called the Bethe
ansatz equations. The energy of the state is given by

E =
∑

i

1

u2
i + 1/4

. (26)

This seemingly surprising fact that the multi-magnon scattering is described by the product
of the two magnon phases is due to the existence of the large number of conserved charges.
They commute with the Hamiltonian and thus can be diagonalized in the same basis. Their
eigenvalues are given by

Qr =
K∑

j=1

i

r − 1

(
1

(uj + i/2)r−1
− 1

(uj − i/2)r−1

)
. (27)

1.2.1. Bethe ansatz in the AdS/CFT correspondence. The N = 4 SYM dilatation operator
in the planar limit can be perturbatively computed in powers of the ’t Hooft coupling λ. In
the seminal work of Minahan and Zarembo [5], it was shown that the one-loop dilatation
operator acts on the six real scalars of the theory exactly like an integrable SO(6) nearest
neighbor spin chain Hamiltonian. Restricting ourselves to two complex scalars, we obtain the
same Hamiltonian considered above. The full N = 4 one-loop dilatation operator [28] is also
governed by an integrable Hamiltonian whose spectrum is given by a system of seven Bethe
equations [29], corresponding to the seven nodes of the psu(2, 2|4) Dynkin diagram. In [30],
the all-loop generalization of the Bethe equation for the SU(2) sector (25) was conjectured
for the first time6 to be(

y+
j

y−
j

)L

=
K∏

j �=i

ui − uj + i

ui − uj − i
, (28)

where yj (uj ) and y±
j (uj ) are given by

y +
1

y
= 4π√

λ
u, y± +

1

y± = 4π√
λ

(
u ± i

2

)
.

On the other hand, for the same sector but from the string sigma model side of the
correspondence, a map between classical string solutions and Riemann surfaces was proposed
[18] and then generalized to the full superstring coset [14], as we reviewed above.

6 Consequently, it was found accurate up to three loops only at weak coupling.
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The resemblance between the cuts connecting the different sheets of these Riemann
surfaces and the distribution of roots of the Bethe equations in some limit seemed to indicate
that the former could be the continuous limit of some quantum string Bethe ansatz. We
will give more details about this so-called scaling limit in the following sections. In [20],
Arutyunov, Frolov and Staudacher (AFS) proposed the following equations:(

y+
j

y−
j

)L

=
K∏

j �=i

ui − uj + i

ui − uj − i
σ 2

AFS(ui, uj ), (29)

where

σAFS(ui, uj ) = 1 − 1
/(

y+
j y−

i

)
1 − 1

/(
y−

j y+
i

)
(

y−
j y−

i − 1

y−
j y+

i − 1

y+
j y+

i − 1

y+
j y−

i − 1

)i(uj −ui )

. (30)

In section 5, we will show how to derive (29) from the bootstrap approach. The striking
similarity between (28) and (29) naturally leads to the proposal that both sides of the
correspondence would be described by the same equation with a scalar factor σ 2 interpolating
from σ 2

AFS for the large ’t Hooft coupling to 1 for small λ.
In [21, 31], Beisert and Staudacher (BS) conjectured the all-loop Bethe equations for the

full PSU(2, 2|4) group to be

eiηφ1−iηφ2 =
K2∏
j=1

u1,k − u2,j + i
2

u1,k − u2,j − i
2

K4∏
j=1

1 − 1
/
x1,kx

+
4,j

1 − 1
/
x1,kx

−
4,j

,

eiηφ2−iηφ3 =
K2∏
j �=k

u2,k − u2,j − i

u2,k − u2,j + i

K3∏
j=1

u2,k − u3,j + i
2

u2,k − u3,j − i
2

K1∏
j=1

u2,k − u1,j + i
2

u2,k − u1,j − i
2

,

eiηφ3−iηφ4 =
K2∏
j=1

u3,k − u2,j + i
2

u3,k − u2,j − i
2

K4∏
j=1

x3,k − x+
4,j

x3,k − x−
4,j

,

eiηφ4−iηφ5 =
(

x−
4,k

x+
4,k

)ηL K4∏
j �=k

u4,k − u4,j + i

u4,k − u4,j − i

K4∏
j

(
1−1

/
x+

4,kx
−
4,j

1−1
/
x−

4,kx
+
4,j

)η−1

σ
2η

AFS(x4,k, x4,j ) e−iηV(u4,k ,u4,j )

×
K1∏
j=1

1 − 1
/
x−

4,kx1,j

1 − 1
/
x+

4,kx1,j

K3∏
j=1

x−
4,k − x3,j

x+
4,k − x3,j

K5∏
j=1

x−
4,k − x5,j

x+
4,k − x5,j

K7∏
j=1

1 − 1
/
x−

4,kx7,j

1 − 1
/
x+

4,kx7,j

,

eiηφ5−iηφ6 =
K6∏
j=1

u5,k − u6,j + i
2

u5,k − u6,j − i
2

K4∏
j=1

x5,k − x+
4,j

x5,k − x−
4,j

,

eiηφ6−iηφ7 =
K6∏
j �=k

u6,k − u6,j − i

u6,k − u6,j + i

K5∏
j=1

u6,k − u5,j + i
2

u6,k − u5,j − i
2

K7∏
j=1

u6,k − u7,j + i
2

u6,k − u7,j − i
2

,

eiηφ7−iηφ8 =
K6∏
j=1

u7,k − u6,j + i
2

u7,k − u6,j − i
2

K4∏
j=1

1 − 1
/
x7,kx

+
4,j

1 − 1
/
x7,kx

−
4,j

.

(31)

where η = ±1. Sets of equations with different η are related between each other by duality
transformation, which we will discuss below. We inserted some additional parameters φi ,
called twists. Strictly speaking, they all should be zero. However, as we will see the situation

11
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when all the twists vanish is a very degenerate one. We will also assume that the twists are
restricted by

φ1 − φ2 − φ3 + φ4 = φ7 − φ8 − φ5 + φ6 = 2πm − η

K4∑
j=1

1

i
log

x+
4

x−
4

. (32)

The phase V(y4,j ) should be responsible for the interpolation between the YM and the string
equations for small and large ’t Hooft coupling λ.

When some configuration of the Bethe roots ua,j is found, the energy of the state (or
anomalous dimension of the SYM operators) is given by

� =
√

λ

2π

K4∑
i=1

(
i

y+
4,j

− i

y−
4,j

)
, (33)

and the generalized expression for the local conserved changes is

Qr = 1

r − 1

K4∑
j=1

(
i(

y+
4,j

)r−1 − i(
y−

4,j

)r−1

)
. (34)

In terms of them, one can rewrite the AFS phase (30) as

σ 2
AFS(uj , uk) = exp

(
2ig

∞∑
r=2

(Qr (uk)Qr+1(uj ) − Qr+1(uk)Qr (uj ))

)
. (35)

In [32], based on a hypothesis for a natural extension for the quantum symmetry of the theory,
Beisert found (up to a scalar factor) an S-matrix from which the BS equations would be
derived. The scalar factor V was then conjectured in [33, 34] from the string side—using
Janik’s crossing relation [35]—and Beisert, Eden and Staudacher (BES) in [36, 37] from the
gauge theory point of view—based on several heuristic considerations [38]. Similar to (35),
one can write

V(uk, uj ) =
∑
r=2

∑
s=r+1

cr,s(g)(Qr (uk)Qs(uj ) − Qs(uk)Qr (uj )) (36)

with

cr,s(g) =
∞∑

n=1

g1−n ((−1)r+s − 1)ζ(n)

(−2π)n�(n − 1)
(r − 1)(s − 1)

� s+r+n−3
2 � s−r+n−1

2

� s+r−n+1
2 � s−r−n+3

2

� ((−1)r+s − 1)

(
2(r − 1)(s − 1)

π(r − s)(r + s − 2)
+

1

12g
(r − 1)(s − 1) + · · ·

)
. (37)

The leading coefficient for g → ∞ was first obtained by Hernandez and Lopez [39].
From the gauge theory side, these equations were tested quite recently up to four loops

[40–42]. From the string theory point of view, the scalar factor recently passed several
nontrivial checks [43–46] where several loops were probed at strong coupling. Also at strong
coupling, the full structure of the BS equations was derived up to two loops in [47, 48] in a
particular limit [49] where the sigma model is drastically simplified.

Another efficient way of testing the predictions of the Bethe ansatz equations is via
anomalous dimensions of the twist-two operators (i.e. local operators with two scalars and S
derivatives, traceless and symmetric in Lorenz indices). In the regime of a large number of
derivatives, their anomalous dimensions scale logarithmical � − S = f (g) log S. f (g) is
a universal scaling function, computed up to four loops in YM [40, 50, 51]. It can also be
computed up to two loops from the string side [52–54]. The methods reviewed in this work
could be applied to compute two-loops prediction from the Bethe ansatz [123]. For the strong
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coupling expansion, our method seems to be the most efficient by far since only some limiting
cases of the results of [123] are reproduced from different methods [66, 67].

It is therefore fair to say that the advance in the last four years was spectacular. On the
other hand it is also true that there is a great deal of conjectures involved one should both
check and, hopefully, prove (or disprove).

In this work, we will check that the BS equations reproduce the one-loop shift around any
classical string soliton solution with exponential precision in the large angular momentum of
the string state J ≡ L/

√
λ.

1.2.2. Thermodynamical limit. In this section we will review a special limit of the Bethe
ansatz equations [22, 23], following closely [18, 24]. It is the so-called thermodynamical or
scaling limit. It corresponds to the ferromagnetic regime of low energies E ∼ 1/L 7 Consider
for example an sl(2) Heisenberg spin-chain Bethe ansatz, which will be studied in details in
the following section

−
(

uj − i/2

uj + i/2

)L

=
K∏

k=1

uj − uk + i

uj − uk − i
, j = 1, . . . , K. (38)

Note that under the formal replacement L → −L, it becomes the above-described su(2) spin
chain. An important property which simplifies the analysis is that the solutions of this set of
the equations are always real, which is not the case for the su(2) spin chain.

Taking log of both parts of (49), we have8

2π inj + L log
uj − i/2

uj + i/2
=

K∑
k=1

log
uj − uk + i

uj − uk − i
. (39)

As we shall see in a moment in the limit L → ∞,K ∼ L and with nj ∼ 1, the Bethe roots
scales like L. It means that the chain is very long and the spins very smoothly change along
it. The typical length of spin waves (magnons) is of the order of length L. It is instructive to
introduce xj = uj/L. We can then write (39) in the form

2πnj − 1

xj

= 2

L

K∑
k=1

1

xj − xk

, (40)

where we expanded (39) for large L. There is a potential danger arising from the right-hand
side, since uj − uk could be of order of 1. As we will see in section 2, these terms with
uj − uk ∼ 1 are responsible for the 1/L correction and are not important at the leading order.

Now let us consider the situation with a finite number of different mode numbers nj and
assume that the number of Bethe roots with the same mode number is of order L. If we take the
ratio K/L to be small, we can neglect the right-hand side of (40) to get xj = 1/(2πnj ). We
see that the points xj with the same mode number are very close to each other and separated
from the other roots by ∼ 1. For K/L ∼ 1, the picture is similar. The points xj with the same
mode number constitute some continuous distributions. The supports of these distributions
corresponding to the different mode numbers are separated by a finite distance ∼ 1. Hence,
roots with the same mode number form a continuous cut in the complex plane x. One can
characterize the distributions by the density

ρ(x) ≡ 1

L

∑
j

δ(x − xj ) (41)

7 It is different from a more traditional regime E ∼ L widely studied since many years, especially in the condensed
matter literature.
8 Note that i

2 log x+i
x−i = arctan(x) − π

2 sign(x) for the standard definition of log.
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Figure 2. Density of roots. The dots correspond to numerical 3-cut solution with total number
of Bethe roots K = 300 and equal fractions αi = 1/6, and ni = {−1, 3, 1}. They are fixed
from the numerical values of the roots by the (60). Solid line is the density at L = ∞ computed
analytically from the corresponding hyper-elliptic curve. x coordinates of the dots are

uj +uj+1
2L

so
that the solitary points in the middle of empty cuts are artifacts of this definition.

or by the resolvent

G(x) ≡ 1

L

K∑
j=1

1

x − xj

�
∫
C

ρ(y) dy

x − y
. (42)

The density is non-zero on a set of cuts in the complex plane which in general consists of
several non-overlapping cuts, C = ⋃

i Ci , where the ith cut Ci represents roots with mode
number ni . In the case of the sl(2) spin chain considered, the roots are always real and the
cuts belong to the real axis.

The scaling limit of the Bethe equations can be rewritten as an integral equation for the
density

2 /G = 2
∫
C

− ρ(y) dy

x − y
= 2πni − 1

x
, x ∈ Ci , (43)

where 2 /G(x) ≡ G(x + i0) + G(x − i0). One can solve this integral equation numerically and
compare with the actual density of the Bethe roots, also found numerically. For the three-cut
configuration, this comparison is given in figure 2 revealing the perfect consistency of the
above analysis.

Let us introduce

p(x) = 1

2x
+ G(x), (44)

which we shall call the quasi-momentum for reasons which will be clear soon. In terms of the
analytic function p(x), the above equation becomes

/p(x) = πni, x ∈ Ci; (45)

in other words, it implies that eip and e−ip are two sheets of the same two-sheet Riemann
surface. This reminds the eigenvalues of the monodromy matrix in the classical finite gap
analysis of section 1.1.1. However we see that our p(x) has a simple pole in the origin, whereas
the quasi-momenta of the AdS5 × S5 string had two poles at ±1. But the BS equations (31)

14
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are designed in such a way that the analogous quasi-momenta arising in the thermodynamical
limit have exactly the same analytical properties as those of the classical ‘finite-gap’ analysis.

Indeed, for J = L/
√

λ fixed and L ∼ Ka � 1 the BS equations can be summarized by
/pi

− /pj
= 2πnij for

p1 = +
2πJ x − δη,+1Q1 + δη,−1Q2x

x2 − 1
+ η(−H1 − H̄ 3 + H̄ 4) + φ1

p2 = +
2πJ x − δη,−1Q1 + δη,+1Q2x

x2 − 1
+ η(−H1 + H2 + H̄ 2 − H̄ 3) + φ2

p3 = +
2πJ x − δη,−1Q1 + δη,+1Q2x

x2 − 1
+ η(−H2 + H3 + H̄ 1 − H̄ 2) + φ3

p4 = +
2πJ x − δη,+1Q1 + δη,−1Q2x

x2 − 1
+ η(+H3 − H4 + H̄ 1) + φ4

p5 = −2πJ x − δη,+1Q1 + δη,−1Q2x

x2 − 1
+ η(−H5 + H4 − H̄ 7) + φ5

p6 = −2πJ x − δη,−1Q1 + δη,+1Q2x

x2 − 1
+ η(−H5 + H6 + H̄ 6 − H̄ 7) + φ6

p7 = −2πJ x − δη,−1Q1 + δη,+1Q2x

x2 − 1
+ η(−H6 + H7 + H̄ 5 − H̄ 6) + φ7

p8 = −2πJ x − δη,+1Q1 + δη,−1Q2x

x2 − 1
+ η(+H7 + H̄ 5 − H̄ 4) + φ8

,

(46)

where we introduced

Ga(x) =
Ka∑
j=1

α(ya,j )

x − ya,j

, Ha(x) =
Ka∑
j=1

α(x)

x − ya,j

, α(x) = 4π√
λ

x2

x2 − 1
.

For η = 1, we will also use the following notations:

p̃1 = p1, p̃2 = p4, p̃3 = p5, p̃4 = p8,

p̂1 = p2, p̂2 = p3, p̂3 = p6, p̂4 = p7.
(47)

The local conserved charges are encoded into the ‘middle-node’ resolvent G4(x) ≡
−∑∞

n=0 Qn+1x
n. To leading order, these quasi-momenta define an eight-sheet Riemann

surface with exactly the same properties as in the classical analysis of the first section.

2. Finite size corrections in the Heisenberg spin chain

This part is devoted to the study of the 1/L finite size corrections in Bethe ansatz equations.
From the string side of the duality, the finite size corrections correspond to the worldsheet
loop expansion. Thus, the careful analysis of the finite size corrections can bring a new insight
and can serve as a very nontrivial test of the different conjectures involved in the AdS/CFT
correspondence. The main result of this section will be the integral equation, describing in a
closed form the finite size corrections to the classical limit in the BS equations.

The similarity, and even the coincidence in a certain regime of the finite size corrections
from the Bethe ansatz side and one-loop corrections to the classical limit from the string side
was already observed earlier on particular string and chain solutions, having only one support
for the Bethe roots distribution [55–62]. 1/L corrections were first studied for BMN states
in [5], where the integrable spin chain for N = 4 SYM was first proposed, and then in [20].
The Airy edge behavior, we will find in this section, also seems to be an important feature,
because it provides some information about the system at all orders in 1/L.
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2.1. Finite size corrections in the sl(2) Heisenberg spin chain

In this section, we study the integrable periodic Heisenberg XXXs chain of non-
compact quantum spins transforming under the representation s = −1/2 of sl(2), in the
thermodynamical limit reviewed in section 1. We will develop some general methods of the
systematic 1/L expansion. In the following section we will generalize it to the so-called
nested Bethe ansatz, which arises for the spin chains with a higher rank symmetry group.

The sl(2) spin chain is known to be solvable by the Bethe ansatz (see, for example, [63])
and the energy of a state of K magnons in dimensionless units is given by a simple formula

E =
K∑

k=1

1

u2
k + 1/4

, (48)

where the Bethe roots uj , j = 1, 2, . . . , K , parameterizing the momenta of magnons, are
solutions of a system of polynomial BAEs

−
(

uj − i/2

uj + i/2

)L

=
K∏

k=1

uj − uk + i

uj − uk − i
, j = 1, . . . , K. (49)

It can be proven that for this model, the roots are always real.
Our goal is to study the limiting L → ∞ distributions of Bethe roots and the finite

volume 1/L corrections to these distributions, to the energy and higher conserved charges.
As we mentioned in section 1 in the main order this thermodynamical limit for the compact
Heisenberg XXX1/2 chain of su(2) spins was already considered in [22], and later in [23] in
relation to the integrable dilatation Hamiltonian in planar perturbative superconformal N = 4
SYM theory. Its description and the general solution in terms of algebraic curves were
proposed in [18] for the su(2) case9 and in [24, 65] for the sl(2) chain.

The study of 1/L corrections in these systems was started recently in the papers [55, 56]
for the simplest single support or one-cut distribution.

In this section, we will get the following results.

(1) The explicit formulae for the 1/L and 1/L2 corrections to the general multi-cut distribution
of Bethe roots and to the corresponding energy of a Bethe state in terms of the underlying
algebraic curve.

(2) The universal description of the distribution of Bethe roots in the vicinity of an edge of a
support in terms of the zeros of the Airy function, similar to the double scaling limit in
the matrix models.

(3) Asymptotics of conserved local charges Qn(K,L) in the large n limit.

Unlike the papers [55, 56] using the method of a singular integral equation corrected by
the so-called anomaly term10, we will use here the exact Baxter equation written directly for
the analytical function—the resolvent of the root distribution (a similar approach was used in
[65]). This approach is more general and can be generalized to the higher orders in 1/L. As
an example, we apply the method to the simplest one-cut configuration.

In the following sections, we will generalize the method developed here for the more
general systems of the equations and finally apply it in section 4 to the conjectured string BS
equations. Then in the following section, we will show how the finite size corrections of the
BS equations match with the one-loop corrections to the classical energy levels in the general
classical background.

9 Following a similar approach of [64] to a somewhat different limit of large spin.
10 In the literature, some local term in the expansion of Bethe equations which was overlooked in early papers is
called anomaly. This phenomenon of anomaly or the contribution of close roots in the thermodynamical limit of the
BAE was first observed in [19].
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2.1.1. Hamiltonian, transfer matrix and higher charges of the sl(2) chain. The Hamiltonian
of interaction of the neighboring spins sl, sl+1 can be written in an explicit way [68]

H−1/2 =
L∑

l=1

Ĥ
l,l+1
−1/2 (50)

with the Hamiltonian density

Ĥ
l,l+1
−1/2|k,m − k〉 =

m∑
k′=0

(
δk=k′ (h(k) + h(m − k)) − δk �=k′

|k − k′|
)

|k′,m − k′〉, (51)

where |k1, . . . , kl, kl+1, . . . , kL〉 is a state vector labeled by L integers kj (s = −1/2 spin
components) and h(k) = ∑k

j=1
1
j

are harmonic numbers (see [63]).
The total momentum P(u)

eiP(uj ) = uj − i/2

uj + i/2
(52)

satisfies the (quasi-)periodicity condition following directly from (49):

Ptot =
K∑

j=1

P(uj ) = 2πk/L, k ∈ Z. (53)

In application to the anomalous dimensions of operators11 in N = 4 SYM theory, one selects
only cyclic Bethe states (with the trivial Bloch phase)

Ptot = 2πm, m ∈ Z. (54)

We can also study other physically interesting quantities of this model, such as the local
conserved charges Q̂r . They are defined as follows:

T̂ (v) = exp

(
i

∞∑
r=1

Q̂rv
r−1

)
, (55)

where the quantum transfer matrix T̂ (v) ≡ T̂ (v; 0, 0, . . . , 0) is a particular case of the
inhomogeneous transfer matrix

T̂ (v; v1, . . . , vL) = Tr0[R̂0,1(v − v1) · · · R̂0,L(v − vL)], (56)

and R̂0,j is the universal sl(2)R-matrix defined as [69]

R̂0,1(v) =
∞∑

j=0

Rj(v)P(j)

0,1, Rj (v) =
j∏

k=1

v − ik

v + ik
(57)

with P(j)

01 being the operator projecting the direct product of two neighboring spins s0 = s1 =
−1/2 to the representation j . Recall that

[T̂ (v; v1, . . . , vL), T̂ (v′; v1, . . . , vL)] = 0 (58)

for any pair v, v′, due to Yang–Baxter equations on the R̂-matrix.
The direct calculation shows that P̂tot = −Q̂1 is the operator of the momentum,

Ĥ−1/2 = Q̂2 is the Hamiltonian (50), etc. These charges are local, in the sense that the
charge density of Qk contains � k consecutive spins.

11 The operators of type Tr(∇k1 Z · · · ∇kLZ) in SYM, where ∇ = ∂ + A is a covariant derivative in a null direction
and Z is a complex scalar, represent the state vectors |k1, . . . , kl , kl+1, . . . , kL〉 and the dilatation Hamiltonian is given
at one loop by the XXX−1/2 Hamiltonian.
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Due to the integrability manifestly expressed by (58), all these charges commute and their
eigenvalues on a Bethe state characterized by a set of Bethe roots satisfying (49) (enforcing
the periodicity of the chain or the quasi-periodicity of the Bethe state) are given by [7]

Qr =
K∑

j=1

i

r − 1

(
1

(uj + i/2)r−1
− 1

(uj − i/2)r−1

)
. (59)

We will later estimate the behavior of Qr at r → ∞ and high orders of 1/L expansion.

2.1.2. 1/L expansion of the BAE. Let us start from reviewing one of the methods of solving
(49) in the thermodynamical limit L → ∞, uk ∼ L ∼ K , before sticking with the most
efficient one using the Baxter equation.

As we mentioned (49) has only real solutions, i.e. all the roots lie on the real axis. We label
the roots so that uj+1 > uj . Suppose that there exists a smooth function X(x) parameterizing
the Bethe roots

uk = LX(k/L), �(X(x)) ≡ 1

X′(x)
� 1

uk+1 − uk

. (60)

For large K, the function �(x) has a meaning of density of Bethe roots. As follows from
definition (60), its normalization is∫

dx �(x) = α (61)

with α = K/L. In the thermodynamical limit, we can rewrite (39) assuming k to be far from
the edges, as follows:∑

j

′
i log

(
uj − uk + i

uj − uk − i

)
= −2

∑
j

′ 1

uj − uk

+
2

3

∑
j

′ 1

(uj − uk)3
− 2

5

∑
j

′ 1

(uj − uk)5

+
2

7

∑
j

′ 1

(uj − uk)7
+

π�′[coth(π�)]6

L
− 1

12L3

(
(π�′)3

[
coth(π�)

sinh2(π�)

]
2

− 2π2�′�′′
[

1

sinh(π�)

]
3

+ π�(3)[coth(π�)]4

)
+ O

(
1

L5

)
, (62)

where we introduce the notation defined by [f (�)]n ≡ f (�)−∑n−1
i=0 f (i)(0)

�i

i! for the functions
regular at zero. For singular functions, the Taylor series should be substituted by the Laurent
series so that [f (�)]n is zero for � = 0 and has first n − 1 zero derivatives at this point. The
terms in the first line represent the naive expansion of the lhs in 1/(uj − uk). It works well
for the terms in the sum with uj � uk . The terms in the second line describe the anomalous
contribution at uj ∼ uk , for close roots with i ∼ j . In this case, we can expand

uj − uk = j − k

�(uj/L)
+ O(1/L) (63)

and calculate the corresponding converging sum giving the terms in the second line. This
anomaly was noted in the Bethe ansatz context in [19] although this phenomenon was known
since long in the large N matrix integrals or similar character expansions [70, 71].

In our case when L → ∞, it is obvious from (62), (39) that the anomaly does not contribute
to the main order and the Bethe ansatz equation becomes a singular integral equation (see
section 1.2.2):

2πnk − 1

x
= 2

∫
Ctot

dy �0(y)

x − y
, x ∈ Ck, k = 1, . . . , K. (64)
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2.1.3. Large L limit and 1/L corrections from the Baxter equation. Equation (49) can be also
obtained as the condition that the transfer matrix eigenvalue T (u) is a polynomial of degree L
(see, for example, [72]):

T (u) = W(u + i/2)
Q(u + i)

Q(u)
+ W(u − i/2)

Q(u − i)

Q(u)
, (65)

where Q(u) = ∏K
k=1(u − uk) and W(u) = uL. This is clear from the very construction of a

Bethe state in the algebraic Bethe ansatz approach [63]. The Bethe equations (49) are simply
a condition that T (u) has no poles.

Introducing notations: x = u/L,�(x) = 1
L

∑K
k=1 log(x − xk), V (x) = log x, 2t (x) =

T (Lx)/(Lx)L, we rewrite (65) as

2t (x) = exp L

[
�

(
x +

i

L

)
− �(x) + V

(
x +

i

2L

)
− V (x)

]
+ c.c. (66)

In these notations, the quasi-momentum (44) takes the form (exactly in 1/L)

p(x) ≡ �′ + V ′/2, (67)

and expanding the Baxter equation in 1/L we get

t (x) = cos p(x)

[
1 − 1

L

(
p′(x)

2
− V ′′(x)

8

)
+

1

2L2

(
p′(x)

2
− V ′′(x)

8

)2
]

+
1

L2
sin p(x)

(
p′′(x)

6
− V (3)(x)

16

)
+ O

(
1

L3

)
. (68)

According to our definition, p(x) is a function of L. We will expand p(x) = p0(x)+ 1
L
p1(x)+

1
L2 p2(x) + O(1/L3) and t (x) = t0(x) + 1

L
t1(x) + 1

L2 t2(x) + O(1/L3) and plug it into the last
equation. Since t (x) has no singularities, except x = 0, it is natural to assume that the
coefficients of expansion t0(x), t1(x), t2(x), . . . are the entire functions on the plane x with no
cuts, having only a singularity at x = 0.

The quasi-periodicity property of the total momentum (53) reads up to three first orders
as follows:

Ptot = −
∑

j

1

uj

+
∑

j

1

12u3
j

+ O
(

1

L4

)
= 2πk/L (69)

and for the cyclic states we select only k = mL, with integer m.

Algebraical curve from the Baxter equation. Let us restore from the Baxter equation the
zero-order result of the previous section. In the zero-order approximation, we get from (68)

cos p0(x) = t0(x) (70)

or

p′
0(x) = 2t ′0(x)√

1 − t2
0

. (71)

Since t0(x) is an entire function all the branch cuts of p0 come from the square root in the
denominator, after the Bethe roots condense to a set C1, . . . , CK of dense supports in the
L → ∞ limit. In this way, we reproduced the thermodynamical limit.
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1/L correction from the Baxter equation. To find the 1/L correction to the leading
approximation to the density of roots, we deduce from (68)

p1 = (−p′
0/2 + V ′′/8) cot p0 − t1

sin p0
. (72)

From (71) and (45), we know about p0(x) that

p+
0 = πnj − π iρ0, p−

0 = πnj + π iρ0 (73)

so that

sin p+
0 = −sin p−

0 , (74)

and thus we have for the real and imaginary parts of p0(x) on the cuts

π iρ1 =
(

V ′′

8
t0 − t1

)
1

sin p−
0

, (75)

/p1 = −p′
0 cot p0/2. (76)

We will solve these equations below and restore the explicit form p1.
Moreover, we see from (69) that

p1(0) = 0 (77)

and p1(x) should decreases as O(1/x2) for large x.
We can build a general solution of the Riemann–Hilbert problem (76):

p1(x) = x

4π if (x)

∮
C

f (y)p′
0(y) cot p0(y)

y(y − x)
dy +

K−2∑
j=1

ajx
j

f (x)
, (78)

where f 2(x) = ∏2K
j=1(x −xj ) and the contour encircles all cuts Ck (but no other singularities).

The first term on the rhs represents the Cauchy integral restoring the function from its real
part on the cuts and having a zero at the origin (the value of the quasi-momentum p(x) at
x = 0,∞ was already fixed for p0) whereas the second one is purely imaginary on the cuts,
with the polynomial in the numerator chosen in such a way that it does not spoil the behavior
of p(x) at x = 0,∞.12

Thus for K < 3, the solution is unique. In particular, for K = 1 we restore from here the
one-cut solution of [55]. For K � 3, we have to fix K − 2 parameters aj . To do this, we have
to use K additional conditions ensuring the right fractions αj of the roots already chosen for
p0: ∮

Cl

p1(x) dx = 0, l = 1, . . . , K; (79)

in fact, only K − 2 of them are linear independent (since we have already fixed the total filling
fraction by the asymptotic properties of (78) at x = ∞: p1(x) = O(1/x2); equation (77)
also restricts some linear combination of conditions (79). Hence, we completely fixed all
parameters of our K-cut solution for the 1/L correction p1 knowing the zero-order solution
(algebraic curve) for p0.

12 We could also add terms 1
f 3 , 1

f 5 , . . . but they are too singular at the branch points as we shall see in the following
section.
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1/L2 corrections from the Baxter relation. Expanding (68) up to 1/L2, we obtain

p2 = −1

2
∂x[cot(p0)I ] − 1

8x3
− t̃2

2 sin(p0)
, (80)

where

I = − t̃1

sin(p0)
= p1 +

p′
0

2
cot p0. (81)

We introduced here the notations

t̃1 = t1 +
cos p0

8x2
,

t̃2 = t2 − cos p0

128x4
+

t̃1

8x2
− cos(2p0) + 5

24 sin p0
p′′

0 +
cos p0

8 sin2 p0

(
3(p′

0)
2 + 4t̃2

1

) (82)

so that t̃1 and t̃2 are single-valued functions on the complex plane.
Note that above the cut I + = π iρ1. We will find the explicit solution of these equations

later, but we will need for that some results of the following section where we study the
behavior of p(x) near the branch points.

2.1.4. Double scaling solution near the branch point. As we stated above, the branch point
singularities come only from the square roots of the denominator of (71). We define an exact
branch point as a point x∗, where t (x∗) = ±1. If we approach one of the branch points
x → x∗, we can expand

t (x) � ±[1 − a(x − x∗)/2 − b(x − x∗)2/2]. (83)

Note that x∗, a, b themselves depend on L. We assume that they have a regular expansion in
1/L and define x∗ = x0 + x1/L + · · ·. We call x0 a classical branch point and x1/L a branch
point displacement.

Denoting v = (x − x∗)L2/3 which will be our double scaling variable v ∼ 1, we get from
(65) up to 1/L2 terms

±2

(
1 − av

2L2/3
− bv2

2L4/3

)
Q(u) = Q(u + i)

W(u + i/2)

W(u)
+ Q(u − i)

W(u − i/2)

W(u)
. (84)

In terms of a new function

q(v) = e−nπvL1/3
e

vL1/3

2x∗ Q(x∗L + vL1/3), (85)

where n is such that t (x∗) = eiπn, and after expansion in 1/L the last equation takes the form

q ′′ − avq = 1

L1/3

4vq ′ + q

4x2∗
+

1

L2/3

[
1

12
q(4)(v) − v2q(v)

4

(
1

x4∗
− 4b

)]
+ O

(
1

L

)
. (86)

In fact, this equation can be easily solved in terms of q0:

q ∝
[

1 +
v2

4x2∗L1/3
+

1

L2/3

(
v4

32x4∗
− 3b − a2

15a
v

)]
q0

(
v − 1

4ax2∗L1/3
+

a2 + 12b

60aL2/3
v2

)
, (87)

where q0(v) = Ai(a1/3v) (the Airy function). The second solution of (86), Bi(a1/3v), has
a wrong asymptotic as we will see. The sign ∝ means that the solution is defined up to a
constant multiplier but this unknown multiplier does not affect the quasi-momentum. Now
we can express the quasi-momentum only through our scaling function q(v):

p
(
x∗ +

v

L2/3

)
= ∂vq(v, L)

q(v, L)L1/3
+ πn +

1

2x∗

(
1

1 + v
x∗L2/3

− 1

)
. (88)
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Figure 3. Quasi-momentum near the branch point as a function of the scaling variable v for
K = 200. The poles correspond to the positions of Bethe roots ui . Red dashed line—‘exact’
numerical value, light gray—zero-order approximation given by the Airy function Ai(a1/3x),
gray—first order and black—second-order approximation.

The first two terms on the rhs, if we substitute q(v) → q0(v), represent the principal
contribution to the double scaling limit near the edge, valid up to the corrections of the
order 1/L2/3. We see from definition (85) that the zeros of q(v) are nothing but the positions
ui of Bethe roots. Thus, we know these positions with a precision 1/L2/3 (see figure 3).

The large v asymptotic will be very helpful in fixing some unknown constant in the 1/L2

corrections given in the following section:

p(x∗ + vL−2/3) = πn +
1

L1/3

⎛
⎜⎜⎜⎝− √

av︸︷︷︸
1

− 1

4v︸︷︷︸
1/L

+
5

32v2
√

av︸ ︷︷ ︸
1/L2

+ · · ·

⎞
⎟⎟⎟⎠

+
1

L2/3

⎛
⎜⎜⎜⎝ 1

8x2∗
√

av︸ ︷︷ ︸
1/L

− 1

16ax2∗v2︸ ︷︷ ︸
1/L2

+ · · ·

⎞
⎟⎟⎟⎠ + · · · , (89)

where the cut corresponds to negative v for a > 0. Introducing the notation y = vL−2/3 and
rearranging the terms by the powers 1/L, we have

p(x∗ + y) = πn +

[
−√

ay − (a2 + 12b)y3/2

24
√

a
+ · · ·

]

+
1

L

[
− 1

4y
+

1

8x2∗
√

ay
+

a2 − 4b

16a
+ · · ·

]

+
1

L2

[
5

32y2√ay
− 1

16ay2x2∗
+

6 − x4
∗(a

2 + 12b)

768x4∗(ay)3/2
+ · · ·

]
+ · · · . (90)

Doing this re-expansion we assume that L−1 � y � 1, trying to sew together the double
scaling region with the 1/L corrections to the thermodynamical limit. This procedure is
similar to that used in higher orders of the WKB approximation in the usual one-dimensional
quantum mechanics (see, for example, [73]).

To compare with p0, p1 and p2, we have to re-expand around x0:

p(x0 + y) = p(x∗ + y) +
x1

L

√
a

2
√

y
+

1

L2

[
− x1

4y2
+

x1

16x2
0y

√
ay

+

√
ax2

1

8y
√

y

]
, (91)
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or introducing notation

x1 = 2A√
a

− 1

4x2
0a

(92)

we get

p(x0 + y) = πn +

[
−√

ay − (a2 + 12b)y2

24
√

ay
+ · · ·

]

+
1

L

[
− 1

4y
+

A√
y

+
a2 − 4b

16a
+ · · ·

]
+

1

L2

[
5

32y2√ay

− A

2
√

ay2
+

(
A2

2y
√

ay
− b

64(ay)3/2
−

√
ay

768y2

)
+ · · ·

]
+ · · · . (93)

Near the left branch point (i.e for a < 0 and y < 0), we have

p(x0 + y) = πn +

[√
ay +

(a2 + 12b)y2

24
√

ay
+ · · ·

]

+
1

L

[
− 1

4y
− A√−y

+
a2 − 4b

16a
+ · · ·

]
+

1

L2

[
− 5

32y2√ay

+
A

2
√−ay2

+

(
A2

2y
√

ay
+

b

64(ay)3/2
+

√
ay

768y2

)
+ · · ·

]
+ · · · . (94)

Now we can compare it with our results of the previous sections and fix a, b and x1.
Let us note that similar Airy-type oscillations were observed in the papers on random

matrices where this behavior occurs near an endpoint of a distribution of eigenvalues [74].

Comparison with the 1/L expansion. It is instructive to establish the relations between
a, b,A and the parameters of the algebraic curve.

For that, we use expansion (83) defining a, b and find from (70) for y > 0

p0(x0 + y) = πn + arccos t0 � πn − √
ay − a2 + 12b

24
√

a
y3/2 + O(y5/2), (95)

in agreement with (93), (94). We can fix a and b up to O (1/L) corrections from here through
the parameters of the solution for p0.

To calculate a and b up to O (1/L) and to fix A, we use expansion (83) with (72). Note
that we have the minus sign in front of

√
ay, which ensures the positivity of the density on the

cut (i.e. for y < 0 and a > 0) ρ(y) � √
a(−y)/π . If we had Bi instead of Ai, the sign would

be plus and the density would be negative.
Now we compare this near-cut behavior to p1. First, consider the regular part

/p1 = −1

2
p′

0 cot p0 � − 1

4y
+

a2 − 4b

16a
+ O(y), (96)

which agrees with (90). From (78), we see that

p1(x0 + y) − /p1(x0 + y) � A√
y

+ O
(

1

y3/2

)
, (97)

where A can be written explicitly, again using p0.
For the example of a one-cut solution, see (120).
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2.1.5. General solution for p2 and E2. Now we have enough information to construct p2 in
the most general situation of an arbitrary number of cuts.

We start from a formula which immediately follows from (80):

/p2 = −1

2
∂x

[
cot(p0)

(
p1 +

p′
0

2
cot p0

)]
− 1

8x3
, (98)

where p1 is given by (78). The behavior near zero and at infinity is as follows. Since from
(53) and (69) it follows that G(0) − 1

24L2 G
′′(0) = 2πk/L + O

(
1
L4

)
, we can conclude that

p2(0) = 1
24G′′

0(0). (99)

For large x, we again have

p2(x) = O
(
1/x2

)
. (100)

Repeating the arguments of the previous subsection, we have

p2(x) = x

4π if (x)

∮
C

f (y)

y(y − x)

(
1

4y3
+ ∂y [cot(p0)p1]

)
+

5K−1∑
j=0

cjx
j

f 5(x)
, (101)

where path C is defined as in (78). Again, the first term guarantees that p2 satisfies (98).
We drop out p′

0 coth p0 for simplicity. We can do this since together with f (y), it forms a
single-valued function without cuts and the integral is given by the poles inside of the path of
integration. In fact, there are only poles at each branch point so that the result can be absorbed
into the second term in (101).

So far, the second term in (101) was restricted only by conditions (99) and (100). Of
course, this does not explain why we should restrict ourselves by the fifth power of f (x) in the
denominator. A natural explanation comes from the known behavior near the branch points
(93), (94) from where we can see that

p2
(
xi

0 + y
) =

⎧⎨
⎩

5
32y2√aiy

− Ai

2
√

aiy2 +
( A2

i

2y
√

aiy
− bi

64(aiy)3/2 −
√

aiy

768y2

)
+ O

(
1
y

)
, ai, y > 0

− 5
32y2√aiy

+ Ai

2
√−aiy2 +

( A2
i

2y
√

aiy
+ bi

64(aiy)3/2 +
√

aiy

768y2

)
+ O

(
1
y

)
, ai, y < 0,

(102)

where all 6K constants ai, bi, Ai for i = 1, . . . , 2K are known since they can be determined
from the near branch point behavior of p0 and p1 (93), (94). ai and bi follow from p0:

p0
(
xi

0 + y
) =

⎧⎨
⎩

−√
aiy − (a2

i +12bi )y
2

24
√

aiy
+ O(y5/2), ai > 0, y > 0

√
aiy + (a2

i +12bi )y
2

24
√

aiy
+ O(y5/2), ai < 0, y < 0

(103)

and Ai comes from p1:

p1
(
xi

0 + y
) =

⎧⎨
⎩

− 1
4y

+ Ai√
y

+ O(y0), ai > 0, y > 0

− 1
4y

− Ai√−y
+ O(y0), ai < 0, y < 0.

(104)

In fact, (102) gives only two nontrivial conditions for each branch point which are the
coefficient before the half-integer power of y so that we have 4K conditions. The extra
K conditions come from zero A-period constraints signifying the absence of corrections to the
filling fractions αi :∮

Cl

p2(x) dx = 0, l = 1, . . . , K. (105)
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Figure 4. Resolvent far from the branch point as a function of x. Red dashed line—‘exact’
numerical value for one-cut solution with K = 10, n = 2, m = 1, light gray—zero-order
approximation, gray—first order given by (78) and black—second-order approximation given
by (108). Note that near the branch point (x0 = 0.02), the approximation explodes and instead of
it we should use the Airy function of (88), like in the usual WKB near a turning point.

To reduce the number of unknown constants, consider a branch point x0. We can see that
for small y = x − x0 (we assume that the cut is on the left, i.e. ai > 0),

I1 ≡ x

4π if (x)

∮
C

f (z)

z(z − x)

(
1

4z3
+ ∂z(p1 cotp0)

)

= 3

16y2√ay
− A

2
√

ay2
+

1

y3/2

(
b

32a3/2
− 5

√
a

128

)
+ O

(
1

y

)
. (106)

Introducing the following integral

I2 ≡ x

4π if (x)

∮
C

f (z)

z(z − x)

(
(p1 + p′

0 cotp0)p1 cotp0 − p′′
0

12

)

= − 1

32y2√ay
+

1

y3/2

(
A2

2
√

a
− 3b

64a3/2
+

29
√

a

768

)
+ O

(
1

y

)
, (107)

we see that I1 + I2 reproduces the right series expansion near the branch points given by (102).
Moreover, on the cuts I2(x + i0) + I2(x − i0) = 0 since the function under the integral is single
valued. We can simply take

p2(x) = I1(x) + I2(x) +
K−1∑
j=0

c̃j x
j

f (x)
, (108)

where the remaining K constants are fixed from (105). Using that p2(0) = G′′(0)/24, we can
fix one constant c̃0 = G′′(0)f (0)

24 before imposing condition (105).
This is our final result for the second quantum correction to the quasi-momentum. In

section 2.1.7, we will specify this result for the example of the one-cut solution where it can
be made much more explicit.

2.1.6. Energy. To find 1/L corrections to the energy, we represent the exact formula (48) as
follows:

E = − 1

L
G′(0) +

1

24L3
G(3)(0) + O

(
1

L5

)
, (109)

We still have to expand G(x) = − 1
2x

+ p0(x) + 1
L
p1(x) + 1

L2 p2(x) + O(1/L3).
Finally, we obtain for the energy:

E = 1

L
E0(x) +

1

L2
E1 +

1

L3
E2 + O

(
1

L4

)
, (110)
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Figure 5. Relative deviation δE(K)/E(K) of analytical computations of the energy E(K) from
its ‘exact’ value Eexact(K) for the one-cut distribution found numerically by Mathematica (solid
line corresponds to δE(K) = 0), for a finite number of roots K and a finite length L for zero-order
(light gray), first-order (gray) and second-order (black) approximations. Details are summarized
in the table

# 1 2 3 4 5

m, n 1, 2 2, 1 1, 3 2, 2 1, 5
E0 12π2 24π2 16π2 32π2 24π2

E1 −558.4 −1563 −855.3 −2401 −1563
E2 1160.0 5464.0 1592.0 8982.0 1504.0
K 10 40 7 20 5
L 20 20 21 20 25
Enumerical 4.66004 8.54515 5.7359 10.7876 7.0232

E0 + E1
L

+ E2
L2 4.670 8.619 5.752 10.912 7.070

where

E0 = −G′
0(0), (111)

E1 = −p′
1(0) = − Q′(0)

4π if (0)

∮
C

f (y)p′(y) cot p(y)

Q(y)y
dy, (112)

and Q(x) = ∑K−2
k=1 bkx

k is related to the last term in (78). For E2, we have from (108) the
following representation:

E2 = G
(3)
0 (0)

24
− p′

2(0) = − c1

f (0)
+

G′′
0(0)f ′(0)

24f (0)
+

G
(3)
0 (0)

24

− 1

4π if (0)

∮
f (y)

y2

(
1

4z3
+ ∂z(p1 cot p0) − p′′

0

12
+ (p1 + p′

0 cot p0)p1 cot p0

)
. (113)

Note that for one-cut, we should take c1 = 0. We can compare our results with numerical
calculations, as is done for a few one-cut solutions in figure 5.

2.1.7. One-cut case. In this section, we express corrections to the energy in terms of infinite
sums for the simplest case of a one-cut solution. For this solution, the hyperelliptic curve is a
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sphere. It is two complex planes connected by a single cut. The density of the Bethe roots is
given by a simple formula [24]

ρ(x) =
√

8πmx − (2πnx − 1)2

2πx
. (114)

We can easily find explicit expressions for ai and bi of (102). With the notation M =√
m(m + n), ai and bi become

a1 = − 8Mn4π3

(
√

4M2 + n2 − 2M)2
,

b1 = 4π4n6

3(
√

4M2 + n2 − 2M)4

(
12M

√
4M2 + n2 + 3n2 − 4n2π2M2 − 24M2) (115)

and

a2 = 8Mn4π3

(
√

4M2 + n2 + 2M)2
,

b2 = − 4π4n6

3(
√

4M2 + n2 + 2M)4

(
12M

√
4M2 + n2 − 3n2 + 4n2π2M2 + 24M2

)
.

(116)

It may be more convenient for comparison with string theory results [53] to express A defined
by (93) as an infinite sum. We have to evaluate the integral in (78) and find A from the behavior
near a branch point. We compute the integral by poles. To that end, we use that the solutions
to the equation sin

(
p0

(
x±

l

)) = 0 are

x±
l = 1

2π

1√
4M2 + n2 ∓

√
4M2 + l2

, l � 0. (117)

The points x±
l=0 are the branch points. They are inside the contour of integration and thus do

not contribute.
Using that f

(
x±

l

)/
x±

l = ± l
n

,

1

x+
l − x0,1

− 1

x−
l − x0,1

= −
√

l2 + 4M2

l2

1

πx2
0,1

1

x+
l − x0,2

− 1

x−
l − x0,2

= −
√

l2 + 4M2

l2

1

πx2
0,2

.

(118)

We can evaluate the integral (78) for x → x0 (we also take x inside the contour to drop an
irrelevant symmetric part of p1):

1

2π i

∮
C

f (y)p′(y) cot p(y)

y(y − x)
dy → − 1

iπnx2
0

[ ∞∑
l=1

(√
l2 + 4M2

l
− 1

)
− 1

2

]
. (119)

We can conclude that

A2 = − 1

2x2
2
√

a2

[ ∞∑
l=1

(√
l2 + 4M2

l
− 1

)
− 1

2

]

A1 = − 1

2x2
1

√−a1

[ ∞∑
l=1

(√
l2 + 4M2

l
− 1

)
− 1

2

]
.

(120)
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We reproduce the result of [55] for E1 in terms of a sum from (112):

E1 = −p′
1(0) = 4π2

∞∑
l=1

l
√

l2 + 4M2 (121)

with the ζ -function regularization assumed.
We can also express our result for the next correction to energy E2 given by (113) as a

double sum. We will need the following quantity:

p1
(
x±

k

) = ±1

2π
(
x±

k

)2
k

[ ∞∑
l=1

(
l
√

l2 + 4M2 − k
√

k2 + 4M2

l2 − k2
− 1

)
+

√
k2 + 4M2

2k
− 1

2

]
. (122)

Evaluating the integrals in (113), we express E2 as a double sum:

E2 = −(I1 + I2 + I3 + I4), (123)

where

I1 ≡ 1

4π if (0)

∮
f (z)

z2
∂z(p1 cot p0) = −2p′

1(0)

+
∞∑

k=1

[
2π

∑
±

(√
4M2 + n2 ± 2

k2 + 2M2

√
k2 + 4M2

)
p1

(
x±

k

) − 4p′
1(0)

]

I2 ≡ 1

4π if (0)

∮
f (z)

4z5
= 4π4M2(n2 + 5M2)

I3 ≡ I ′
2(0) = 1

16

(
1

x2
0,1

+
1

x2
0,2

)
+

1

x0,1

(
7a1

96
− b1

8a1
− A2

1

)
+

1

x0,2

(
7a2

96
− b2

8a2
+ A2

2

)

I4 ≡ −G′′
0(0)f ′(0)

24f (0)
− G

(3)
0 (0)

24
= 4

3
M2(2n2 + 11M2)π4. (124)

Note that in our new notations, 1/x0,i = 4πM ± 2π
√

4M2 + n2. Expressions for ai, bi and
Ai are given in (115), (116) and (120), respectively.

2.1.8. Local charges. In this, we will calculate local charges Qr in all powers of 1/L but
for the large r from the behavior near the relevant branch point. The idea of this calculation is
taken from the double scaling approach in matrix models. Namely, one can compare it to the
calculation of the resolvent of eigenvalues in a Gaussian unitary matrix ensemble:

HN(x) =
∫

dN2
M

(2π)N
2 exp

(
−N

2
Tr M2

)
Tr(x − M)−1 =

∞∑
g=1

N2−2g

∞∑
n=0

x−2n−1H(g,n), (125)

where M is the Hermitian matrix of a large size N. The coefficients H(g,n) actually give the
number of specific planar graphs: it is given by the number of surfaces of genus g which can
be done from a polygon with 2n edges, by the pairwise gluing of these edges. To extract the
large n asymptotics of H(g,n) for any g, one can use that in the large N limit the density (which
is the imaginary part of the resolvent on the support of eigenvalues) is given by Wigner’s
semi-circle law and the near-edge behavior is described by the Airy functional asymptotics
[74, 75] showing the traces of individual eigenvalues in the continuous semi-circle distribution.
We will try to extract similar asymptotics for the distribution of Bethe roots. The role of the
1/N expansion will be played by the 1/L expansion whereas the order of the 1/x expansion
in the matrix model will now be played by the label r of the charge.
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We start from expanding (59)

Qr =
∞∑

m=0

1

Lr+2m−1

(−1)m+1G(r+2m−1)(0)

(2m + 1)!(r − 1)!22m
. (126)

As we shall see, for large r only the m = 0 term contributes. We express the derivative as
a contour integral around cuts

G(n)(0) = − n!

2π i

∮
C

G(x)

xn+1
dx. (127)

For large n, only a small neighborhood of the closest to zero branch point x0 contributes due
to the exponential suppression by the 1/xn+1 factor. Near the branch point x0, we have from
(93) (see also (94), (88)

Gk(x) = δk0

(
πni − 1

2x0

)
+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ck(x − x0)
1
2 − 3k

2 |a| 1
2 − k

2 + O
(
(x − x0)

1− 3k
2
)
,

a > 0, x0 < 0

(−1)k+1ck(x0 − x)
1
2 − 3k

2 |a| 1
2 − k

2 + O
(
(x0 − x)1− 3k

2
)
,

a < 0, x0 > 0

(128)

where the universal constants ck can be computed from the known asymptotic of the Airy
function

Ai(z) = e− 2z3/2

3

2
√

πz1/4

[
n∑

k=0

(
1
6

)
k

(
5
6

)
k

k!

(
− 3

4z3/2

)k

+ O
(

1

z3(n+1)/2

)]
(129)

so that

ck = Ai′(z)
Ai(z)

∣∣∣∣
z
− 3k−1

2

, (130)

in particular, c0 = −1, c1 = − 1
4 , c2 = 5

32 , c3 = − 15
64 , c4 = 1105

2048 , c5 = − 1695
1024 , c6 =

414 125
65 536 , c7 = − 59 025

2048 .
These coefficients behave asymptotically as ck ∼ (−1)kk! at k → ∞.
We assume that k � n, r and expand (for x0 < 0)∮ 0

−y0

(y + x0)
−nyβ dy = |x0|β+1−n(−1)n

∮ 0

−y0

yβ e−n log(1−y) dy

� |x0|β+1−n(−1)n
∮ 0

−∞
yβ eny dy. (131)

For the last integral the path of integration starts at −∞ − i0, encircles the origin in the
counterclockwise direction and returns to the point −∞ + i0. For the first integral, the path
is finite: it starts at some point −y0 − i0 where 0 < y0 < |x0| and ends at −y0 + i0. The
dependence on y0 is exponentially suppressed. The last integral is nothing but Hankel’s
contour integral:∮ 0

−y0

(y + x0)
−nyβ dy = (−1)n|x0|β+1−nn−β−1 2π i

�(−β)

(
1 + O

(
1

n

))
, (132)

similarly, ∮ y0

0
(y + x0)

−n(−y)β dy = −|x0|β+1−nn−β−1 2π i

�(−β)

(
1 + O

(
1

n

))
(133)
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so that

G
(n)
k (0)

n!
=

⎧⎪⎨
⎪⎩

(−1)n
ck |a| 1

2 − k
2 n

3k
2 − 3

2 |x0|
1
2 − 3k

2 −n

�( 3k
2 − 1

2 )

(
1 + O

(
1
n

))
, a > 0, x0 < 0

(−1)k+1 ck |a| 1
2 − k

2 n
3k
2 − 3

2 |x0|
1
2 − 3k

2 −n

�( 3k
2 − 1

2 )

(
1 + O

(
1
n

))
, a < 0, x0 > 0.

(134)

As we can see from here, only the term with m = 0 in (126) contributes at large n. The others
are suppressed as 1/n and the final result is

Qk,r =

⎧⎪⎨
⎪⎩

(−1)r
ck |a| 1

2 − k
2 r

3k
2 − 3

2 |x0|
3
2 − 3k

2 −r

�( 3k
2 − 1

2 )
(1 + O(r−1/2)), a > 0, x0 < 0

(−1)k
ck |a| 1

2 − k
2 r

3k
2 − 3

2 |x0|
3
2 − 3k

2 −r

�( 3k
2 − 1

2 )
(1 + O(r−1/2)), a < 0, x0 > 0,

(135)

where we introduced the notation

Qr = 1

Lr−1

∞∑
k=0

Qk,r

1

Lk
. (136)

Note that Qk,r is similar to Hg,n of the matrix model.

2.1.9. Summary. We showed in this section on the example of sl(2) Heisenberg spin chain
how to find finite size corrections in the thermodynamical limit. We also propose a double
scaling analysis of the near-edge distribution of Bethe roots, which gives some interesting
results for the asymptotics of high conserved charges for the finite size corrections of any
order.

The methods presented here can be easily carried over to the su(2) quantum chain as
well, though some peculiarities of this model, such as complex distributions of roots and
the presence of ‘string’ condensates with equally distributed roots [23], should be taken into
account. Only slight modifications of our results will allow one to find the 1/L corrections
in the long-range integrable deformations of the su(2) spin chain described in [76, 77]. As
for more complicated models solved by the nested Bethe ansatz, 1/L will be discussed in the
following section.

2.2. Finite size corrections in the su(1,2) Heisenberg spin chain

In this section, we mainly stick to the simple example of the su(1, 2) spin chain. This simple
toy model has already contained all the nontrivial new features appearing due to the nested
nature of the Bethe ansatz. The generalization to other (super)groups is straightforward and
in particular, we shall focus on the Bethe ansatz describing the superstring in AdS5 × S5 in
section 4.

The scattering of excitations in this model is governed not by a simple phase factor as
was in the su(2) case considered in section 1 but rather by the S-matrix. To derive the Bethe
ansatz restricting the momenta of the excitations due to the periodical boundaries, we have to
solve a diagonalization problem

e−ipkL|ψ〉 =
K∏

j �=k

S(pk, pj )|ψ〉, (137)

where S(pk, pj ) is a matrix and |ψ〉 is the multi-particle wavefunction. One can consider
the matrix on the rhs as a spin-chain Hamiltonian, depending on the momenta of the initial
excitations pi as on parameters. One can show that this Hamiltonian is also integrable. The
scattering of the excitations with some momenta p̃i in this auxiliary spin chain is governed by
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Figure 6. For su(K|M) superalgebras, the Dynkin diagram is not unique. The several possible
choices can be represented as paths going from the up right corner (M, K) to the origin always
approaching this point with each step. The turns are the fermionic nodes whereas the straight lines
correspond to the usual bosonic nodes. Different paths will correspond to different sets of Bethe
equations which are related by fermionic dualities which flip a left–down fermionic turn into a
down–left turn or vice versa [78].

a smaller size S-matrix. Continuing in this way, we will finally get a scalar S-matrix for which
(137) is trivial. Thus for integrable rank r spin chains, each quantum state is parameterized by
a set {ua,j } of Bethe roots where a = 1, . . . , r and j = 1, . . . , Ka , where Ka is the excitation
number of magnons of type a. The nested Bethe ansatz (NBA) equation from which we find
these roots is given by

eiτa

(
ua,j + i

2Va

ua,j − i
2Va

)L

= −
r∏

b=1

Qb

(
ua,j + i

2Mab

)
Qb

(
ua,j − i

2Mab

) , (138)

where

Qa(u) =
Ka∏
j=1

(u − ua,j )

are the Baxter polynomials, Va are the Dynkin labels of the representation considered and
Mab is the Cartan matrix. In fact, in contrast to what happens for the usual Lie algebras,
for superalgebras the Dynkin diagram (and thus the Cartan matrix) is not unique. Take for
example the su(K|M) superalgebra. The different possible Dynkin diagrams can be identified
[78] as different paths starting from (M,K) and finishing at (0, 0) (always approaching this
point with each step) in a rectangular lattice of size M × K as in figure 6. The turns in this
path represent the fermionic nodes whereas the bosonic nodes are those which are crossed by
a straight line—see figure 6 (the index a goes along the path as indicated). The Cartan matrix
Mab is then given by

Mab = (pa + pa+1) δab − pa+1δa+1,b − paδa,b+1,

where pa is associated with the link between nodes a and a + 1 and is equal to +1 (−1) if this
link is vertical (horizontal).

Here, we consider twisted (quasi-periodic) boundary conditions, i.e. we restrict to the
states which are periodical up to the multiplication by

g = diag(eiφ1 , . . . , eiφK , eiϕ1 , . . . , eiϕM ) ∈ SU(K|M), (139)
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and the twists τa , appearing in (138) and associated with a Dynkin node located at (m, k) in
the M × K network depicted in figure 6, are then given by [79]

τa = φk − φk+1 for a bosonic along a vertical segment of the path

τa = ϕm+1 − ϕm for a bosonic along a horizontal segment of the path

τa = ϕm+1 − φk + π for a fermionic node in a �-like turn that is with pa−1 = −pa = 1

τa = φk+1 − ϕm + π for a fermionic node with pa−1 = −pa = −1.

Note that since g ∈ SU(K|M), we have
∑

k φk − ∑
m ϕm = 0 mod 2π . We shall study these

Bethe equations with generic twists and we will see that the usual case (τa = 0) is in fact quite
degenerate.

As mentioned above, we already found all the ingredients we will need for the study of the
BS equations in the simple example of a su(1, 2) spin chain in the fundamental representation
described by the following system of NBA equations13:

eiφ1−iφ2 = − Q1(u1,j + i)

Q1(u1,j − i)

Q2(u1,j − i/2)

Q2(u1,j + i/2)
, j = 1, . . . , K1, (140)

eiφ2−iφ3

(
u2,j − i

2

u2,j + i
2

)L

= − Q2(u2,j + i)

Q2(u2,j − i)

Q1(u2,j − i/2)

Q1(u2,j + i/2)
, j = 1, . . . , K2. (141)

The eigenvalues of the local conserved charges are functions of roots u2,j only and are given
by

Qr =
K2∑
j=1

i

r − 1

(
1

(u2,j + i/2)r−1
− 1

(u2,j − i/2)r−1

)
. (142)

We will often call these momentum-carrying roots carrying charges middle node roots14.
First, consider only middle node excitations; K1 = 0 �= K2 in the equations reduces to

the sl(2) case considered above

2πnA + φ2 − φ3 = 1

x
+ 2 /G2(x), x ∈ CA, (143)

where we introduce the resolvents

Ga(x) =
∫

ρa(y)

x − y
, ρa(y) = 1

L

Ka∑
j=1

δ(x − xa,j ). (144)

Let us also introduce some notation useful for what will follow. Defining the quasi-momenta
as

p1 = − 1

2x
+ G1 − φ1,

p2 = − 1

2x
− G1 + G2 − φ2, (145)

p3 = − 3

2x
− G2 − φ3,

13 These equations are exactly the same as for the su(3) spin chain except for the sign of the Dynkin labels which
makes the system simpler because the Bethe roots are in general real.
14 This name is not very proper in this situation. For the BS equations, the momentum-carrying roots are indeed in
the middle of the Dynkin diagram.
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(a) (b) (c)

Figure 7. The middle node Bethe roots u2 can condense into a line as depicted in figure 7(a). (The
spins in this spin chain transform in a non-compact representation and thus the cuts are typically
real. For the su(2) Heisenberg magnet, the solutions are distributed in the complex plane as some
umbrella-shaped curves [23].). Roots of different types can form bound states, called stacks [19],
as shown in figure 7(b). The stacks behave as fundamental excitations and can also form cuts of
stacks as represented in figure 7(c).

we can add indices 23 to the mode number nA and to the cut CA in (143) and recast this
equation as

2πnA
23 = /p2 − /p3, x ∈ CA

23. (146)

Next let us consider a state with only two roots u2,1 ≡ u and u1,1 ≡ v with different
flavors, that is, K1 = K2 = 1. Bethe equations then yield

u = 1

2
cot

φ1 − φ3 + 2πn

2L
, v = u +

1

2
cot

φ1 − φ2

2
, (147)

which tells us that if n ∼ 1 we are in the scaling limit where v ∼ u ∼ L and v = u+O(1)—the
two Bethe roots form a bound state, called stack [19], and can be thought of as a fundamental
excitation (see figure 7(b)). On the other hand we note that, strictly speaking, for the usual
untwisted Bethe ansatz with φa = 0 the stack no longer exists.

Since the stack in figure 7(b) seems to behave as a fundamental excitation, one might
wonder whether there exists a cut with K1 = K2 roots of types u1 and u2, like in figure 7(c),
dual to the configuration plotted in figure 7(a). To answer affirmatively to this question, let us
introduce a novel kind of duality in the Bethe ansatz which we shall call bosonic duality.

Indeed, as we will explain in detail in section 2.2.4, given a configuration of K1 roots of
type u1 and K2 roots of type u2, we can write

2i sin (τ/2) Q2(u) = eiτ/2Q1(u − i/2)Q̃1(u + i/2) − e−τ/2Q1(u + i/2)Q̃1(u − i/2), (148)

where

Q̃1(u) =
K̃1∏
j=1

(u − ũ1,j ), K̃1 = K2 − K1,

and τ = φ1 − φ2. Moreover, this decomposition is unique and thus defines unambiguously
the position of the new set of roots ũ1. Then, as we will explain in section 2.2.4, the new set
of roots {ũ1, u2} is a solution of the same set of Bethe equations (138) with

φ1 ↔ φ2.

Let us then apply this duality to a configuration like that in figure 7(a) where the roots u2 ∼ L

are in the scaling limit and where there are no roots of type u1,K1 = 0. To the leading order,
we see that ũ1 in (148) will scale like L so that ±i/2 inside the Baxter polynomials can be
dropped and we find Q2 � Q̃1, that is,

ũ1,j = u2,j + O(1)
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(a) (b)

Figure 8. In the scaling limit, to the leading order, the bosonic duality reads as Q2 � Q1Q̃1 with
Qa = ∏Ka

k=1(u − ua). Thus, if we start with the configuration in figure 8(a) where the K1 roots u1
form a cut of stacks together with K1 out of the K2 middle node roots u2 and apply the bosonic
duality to this configuration, the K2 − K1 new roots ũ1 must be close to the roots u2 which were
previously single while the cut of stacks in the left of figure 8(a) will become, after the duality, a
cut of simple roots—see figure 8(b).

(a) (b)

Figure 9. In the scaling limit the configurations in figure 8 condense into some disjoint segments,
cuts, and we obtain a Riemann surface whose sheets are quasi-momenta. In this continuous limit,
the duality corresponds to the exchange of the Riemann sheets.

and therefore we will indeed obtain a configuration like that depicted in figure 7(c). Moreover,
the local charges (142) of this dual cut are exactly the same as those of the original cut 7(a)
since they are carried by the middle node roots u2 which are untouched during the duality
transformation.

Finally, if we apply the duality transformation to some configuration like that in figure 8(a)
in the scaling limit we find, by the same reasons as above, that Q2(u) � Q1(u)Q̃1(u). This
means that the dual roots ũ1 will be close to roots u2 which are not yet part of a stack—the ones
making the cut in the right in figure 8(a). Thus, after the duality, we will obtain a configuration
like that in figure 8(b).

We conclude that, in the scaling limit with a large number of roots, the distributions of
Bethe roots condense into cuts in such a way that the quasi-momenta pi introduced above
become the three sheets of a Riemann surface (see figure 9(a)) obeying

2πnA
ij = /pi

− /pj
, x ∈ CA

ij (149)

when x belongs to a cut joining sheets i and j with mode number nA
ij . The duality

transformation amounts to a reshuffling of sheets 1 and 2 of this Riemann surface15 so that a
surface like that plotted in figure 9(a) transforms into that indicated in figure 9(b).

2.2.1. Finite size correction to nested Bethe Ansatz equations. In this section, we will study
the leading 1/L corrections to the scaling equations (149). Moreover since the charges of
the solutions are expressed through middle node roots u2 and since these roots are duality

15 As we shall see in the following section this interpretation can be made exact, and not only valid in the scaling
limit.
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invariant, it is useful to write the Bethe equations in terms of these roots only to have duality-
invariant equations. Let us then consider a given configuration of roots condensed into some
simple cuts C23 and some cuts of stacks C13. Then, to leading order, at cuts C23 we have

1

x
+ 2

∫
C23

− ρ2(y) dy

x − y
+
∫
C13

ρ2(y) dy

x − y
= 2πnA

23 + φ2 − φ3, x ∈ C23 (150)

because in cut C13 we have ρ1 � ρ2 +O(1/L). To study finite size corrections to this equation,
two contributions must be considered. On the one hand, as we saw in the previous section,
when expanding the self-interaction we get [58, 61, 55, 56, 57, 80]∑

j �=k

i log
u2,k − u2,j − i

u2,k − u2,j + i
= 2

∫
C23

− ρ2(y) dy

x − y
+ 2

∫
C13

ρ2(y) dy

x − y
+

1

L
πρ ′

2 cot πρ2,

where the 1/L correction comes from the contribution to the sum from the roots separated by
O(1). On the other hand, the auxiliary roots appear as16

∑
j

i log
u2,k − u1,j + i/2

u2,k − u1,j − i/2
= −

∫
C13

ρ1(y)

x − y
dy = −

∫
C13

ρ2(y)

x − y
dy −

∫
C13

ρ1(y) − ρ2(y)

x − y
dy

where the last term accounts for the mismatch in densities in cuts C13 and is clearly also a
O(1/L) effect. Below, we will compute this mismatch and find

ρ1(x) − ρ2(x) = � cot12

2π iL
= cot+21 − cot+23

2π iL
, x ∈ C13 (151)

where �f ≡ f (x + i0) − f (x − i0) and

cotij ≡ p′
i − p′

j

2
cot

pi − pj

2
. (152)

Thus we find, for x ∈ C23,

1

x
+ 2

∫
C23

− ρ2(y) dy

x − y
+
∫
C13

ρ2(y) dy

x − y
= 2πnA

23 + φ2 − φ3 − 1

L

[
cot23 −

∫
C13

� cot12

x − y

dy

2π i

]
.

(153)

As explained before, if we apply the duality transformation, cuts C23 become cuts C13 and vice
versa and, to leading order, p1 ↔ p2. Thus for cuts C13 we find precisely the same equation
(153) with 1 ↔ 2, so that for x ∈ C13

1

x
+ 2

∫
C13

− ρ2(y) dy

x − y
+
∫
C23

ρ2(y) dy

x − y
= 2πnA

13 + φ1 − φ3 − 1

L

[
cot13 −

∫
C23

� cot12

x − y

dy

2π i

]
.

(154)

These two equations describing the finite size corrections for the two types of cuts of the
su(1, 2) spin chain are the main results of this section.

In what follows, we will derive this result from two different approaches. Namely, we
will find these finite size corrections using a Baxter formalism, similar to that considered in
the previous section, based on transfer matrices for this spin chain in several representations
and by exploiting the duality we mentioned in the previous section. It will become clear
that the generalization to other NBA equations based on higher rank symmetry groups is
straightforward.

16 Recall that the Bethe roots u2,k belong to a C23 cut and therefore is always well separated from u1,j roots which
always belong to C13 cuts.
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2.2.2. Derivation using the transfer matrices. The central object in the study of integrable
systems is the transfer matrix T̂ (u). The algebraic Bethe ansatz formalism has the
diagonalization of such objects as the main goal and the Bethe equations appear in the process
of diagonalization (see [63] and references therein for an introduction to the algebraic Bethe
ansatz). As functions of a spectral parameter u and of the Bethe roots ua,j , these transfer
matrices seem to have some poles at the positions of the Bethe roots. On the other hand, they
are defined as a product of R operators which do not have these singularities. This means
that the residues of these apparent poles must vanish. These analyticity conditions (on Bethe
roots) turn out to be precisely the Bethe equations and, thus, if we manage to obtain the
eigenvalues of the transfer matrices, we can use this condition of pole cancelation to obtain
the Bethe equations without going through the algebraic Bethe ansatz procedure; see, for
example, [72, 78, 81, 82]. For the su(1, 2) spin chain, we have the following transfer matrices
in the anti-symmetric representations:

T�(u) = e−iφ2
Q1

(
u − 3i

4

)
Q1

(
u + i

4

) Q2
(
u + 3i

4

)
Q2

(
u − i

4

)
(

u − 5i
4

u − 3i
4

)L

+ e−iφ1
Q1

(
u + 5i

4

)
Q1

(
u + i

4

)
(

u − 5i
4

u − 3i
4

)L

+ e−iφ3
Q2

(
u − 5i

4

)
Q2

(
u − i

4

)
(

u − 5i
4

u + i
4

)L

, (155)

T (u) = T̄�(ū)

(
u − 5i

4

u + 5i
4

)L

, T (u) =
(

u − 5i
4

u + 5i
4

)L

.

One can easily see that Bethe equations do follow from requiring analyticity of these transfer
matrices.

In the previous section, it was shown and emphasized that the T Q Baxter relations are the
most powerful method to extract finite size corrections to the scaling limit of Bethe equations.

In this section, we will use the transfer matrices presented above along with the fact that,
due to Bethe equations, they are good analytical functions of u to find what are the finite
size corrections to this nested Bethe ansatz. Since for generic (super) nested Bethe ansatz
the transfer matrices in the several representations are known, this procedure can be easily
generalized for other NBAs.

The key idea to find the finite size corrections to the NBA is to use the transfer matrices
in the various representations to define a new set of quasi-momenta qi as the solutions of an
algebraic equation whose coefficients are these transfer matrices. For example, to leading
order,

T�(u) � eip1 + eip2 + eip3 ,

T (u) � ei(p1+p2) + ei(p2+p3) + ei(p3+p1),

T (u) � ei(p1+p2+p3),

so that if we define a set of exact quasi-momenta qi by

T (u) − eiqT (u)

(
1 − L

4u2

)
+ e2iqT�(u)

(
1 − L

4u2

)
− e3iq = 0, (156)

then, to leading order, qi � pi . The factors we add in the definition of qi look non-natural,
but then are chosen to simplify the result. Note however that the coefficients in this equation
have no singularities except some fixed poles close to u = 0. Thus, defined in this way, the
quasi-momenta qi constitute a four-sheet algebraic surface (modulo 2π ambiguities) such that

/qi
− /qj

= 2πnA
ij , x ∈ Cij , (157)
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and, needless to say, this is an exact result in L; it is not a classical (scaling limit) leading result
like (149). On the other hand, the expansion at large L of the above algebraic equation yields

q1 = p1 +
1

2L
(+ cot12 + cot13)

q2 = p2 +
1

2L
(− cot21 + cot23)

q3 = p3 +
1

2L
(− cot31 − cot32),

which follows from the expansion

T�(u)

(
1 − L

4u2

)
= eip1 + eip2 + eip3 − 1

4L
[eip1(2p′

1 − p′
2 − p′

3)

+ eip2(p′
1 − p′

3) + eip3(p′
1 + p′

2 − 2p′
3)] + O

(
1

L2

)

T (u)

(
1 − L

4u2

)
= ei(p1+p2) + ei(p2+p3) + ei(p3+p1) − 1

4L
[ei(p1+p2)(p′

1 + p′
2 − 2p′

3)

+ ei(p1+p3)(p′
1 − p′

3) + ei(p2+p3)(2p′
1 − p′

2 − p′
3)] + O

(
1

L2

)
,

T (u) = ei(p1+p2+p3) + O
(

1

L2

)
of the several transfer matrices. Then, to the first order in 1/L the exact equation (157) gives,
for the quasi-momenta pi introduced in (258),

/p2 − /p3 = 2πnA
23 − 1

L
cot23, x ∈ C23, (158)

/p1 − /p3 = 2πnA
13 − 1

2L
(cot12 + 2 cot13 + cot32), x ∈ C13, (159)

where in (158) we use the fact that function cot31 − cot21 vanishes under the slash on the cut
C23 since

cot+ij = cot−kj , x ∈ Cik. (160)

Equations (158) and (159) are the finite size corrections we aimed at.
Finally, q2 must have no discontinuity at cut C13, and therefore

�p2 = 2π i(ρ1 − ρ2) = 1

L

(
cot+21 − cot+23

)
, x ∈ C13. (161)

Thus, replacing the quasi-momenta pi by its expressions in terms of resolvents (258) and
relating the density of auxiliary roots ρ1 to that of the middle node roots ρ2 through (161), we
recover precisely (153) and (154) as announced.

We would like to stress the efficiency of the T Q relations. We were able to find the usual
cot contributions (coming from the expansion of the log’s of Bethe equations when the Bethe
roots are close to each other) plus the mismatch in densities of the different types of roots
making the cuts of stacks using only the fact that due to Bethe equations, the transfer matrices
in several representations were analytical functions of u. The computation done in this way is
by far more economical than a brute force expansion of the Bethe equations.

Finally, let us make an important remark. To derive (154) from (159), one should use

cot12 = − 1

2π i

∫
C13∪C23

� cot12

x − y
dy, (162)
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which is clearly a valid relation if cot12 has only branch cuts as singularities. For generic
twists and for small enough cuts C13 and C23, this is the case. Indeed, in the absence of Bethe
roots we have no cuts at all and thus p1 − p2 = φ2 − φ1. Suppose φ2 − φ1 �= 2πn. Then,
by continuity, when we slowly open some cuts C23 and C13, p1 − p2 will start taking positive
values around φ2 − φ1 without ever being zero. Thus, if the cuts are small enough we will
never get poles in cot12. In section 2.2.4, we will see that the stacks as described in [14] only
exist when this assumption of absence of poles is right and are destroyed when p1 −p2 reaches
2πn.

2.2.3. Rederivation using the bosonic duality in the scaling limit. In this section, let us
rederive the mismatch formula (151) using the bosonic duality (163). Besides the obvious
advantage for what concerns our comprehension of having a second derivation, there are
systems for which Bethe equations are known but the algebraic formalism behind these
equations is still not well developed (this is the case, for example, for the AdS/CFT Bethe
equations proposed by Beisert and Staudacher which we will study in section 4.2).

Denoting

u1,i = u2,i − εi, ũ1,i = u2,i − ε̃i , ε ∼ 1,

and expanding the bosonic duality (163) in the scaling limit (L → ∞), we get

sin(τ/2) = sin

(
1

2
(G̃1 − G1 + τ)

)
exp

⎛
⎝ K1∑

i=1

εi

u − u1
i

+
K̃1∑
i=1

ε̃i

u − u1
i

⎞
⎠ ,

where τ = φ1 − φ2. Taking the logarithm of this equation and differentiating with respect to
u, we get

∑ εi(
u − u1

i

)2 +
∑ ε̃i(

u − u1
i

)2 = G̃′
1 − G′

1

2L
cot

G̃1 − G1 + τ

2

where we note that the left-hand side is precisely the difference of resolvents G2 − G1 − G̃1.
Thus, we find

G2 − G1 − G̃1 = G̃′
1 − G′

1

2L
cot

G̃1 − G1 + τ

2
� G′

2 − 2G′
1

2L
cot

G2 − 2G1 + τ

2
= 1

L
cot12 .

Finally, by computing the discontinuity of this expression at cuts C13 we will get the mismatch
the densities of the roots in a cut of stacks17

ρ1 − ρ2 = � cot12

2π iL
= cot+21 − cot+23

2π iL
,

which was the gap in the chain of arguments presented in the beginning of section 2.2.1 and
leading to (153).

Finally, let us show that the bosonic duality amounts to a simple exchange of Riemann
sheets in the scaling limit. Consider, for example,

p̃1 = − 1

2x
+ G̃1 − φ̃1 = − 1

2x
+ G2 − G1 − φ̃1 = p2

since, as we will see more carefully in the following section, φ̃1,2 = φ2,1.

17 �f = f + − f −, so that ρ = − �G
2π i .
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2.2.4. More about bosonic duality. In this section, we will explain some details behind the
bosonic duality (148) mentioned in section 2.2. There are two main steps to be considered.
On one hand, we have to prove that for a set of K2 generic complex numbers u2 and K1 roots
u1 obeying the auxiliary Bethe equations (140) it is possible to write (τ = φ1 − φ2):

2i sin (τ/2) Q2(u) = eiτ/2Q1(u − i/2)Q̃1(u + i/2) − e−iτ/2Q1(u + i/2)Q̃1(u − i/2), (163)

and that, in doing so, we define the position of a new set of numbers ũ1. A priori this is not
at all a trivial statement because we have a polynomial of degree K2 on the left whereas on
the right-hand side we have only K2 − K1 parameters to fix. However, as we will see, if K1

equations (140) are satisfied it is possible to write Q2(u) in this form. This will be the subject
of section 2.2.4.

Assuming (163) to be proved, we can use this relation to show that in the original Bethe
equations we can replace roots u1 by new roots ũ1 with the simultaneous exchange φ1 ↔ φ2.
Indeed if we evaluate the duality at u = u2,j , we find

Q1(u2,j − i/2)

Q1(u2,j + i/2)
= ei(φ2−φ1)

Q̃1(u2,j − i/2)

Q̃1(u2,j + i/2)
,

meaning that in equation (141) for the u2 roots we can replace roots u1 by the dual roots ũ1

provided we replace φ1 ↔ φ2. Moreover if we take u = ũ1,j ± i/2, we will get

eiφ2−iφ1 = − Q̃1(ũ1 + i)

Q̃1(ũ1 − i)

Q2(ũ1 − i/2)

Q2(ũ1 + i/2)
,

which we recognize as equation (140) with K2 − K1 roots ũ1 in place of the K1 original roots
u1 and with φ1 ↔ φ2. Finally evaluating (163) at u = u1,j ± i/2, we will get the original
equation (140) so that we see that it must be satisfied in order for equation (163) to be valid.

In section 2.2.4, we will also see that the transfer matrices are invariant under the bosonic
duality accompanied by an appropriate reshuffling of phases φa . In section 2.2.5, some curious
examples of dual states will be given.

Decomposition proof. In this section, we shall prove that one can always decompose Q2(u)

as in (163) and that this decomposition uniquely fixes the position of the new set of roots ũ1.
In other words, let us show that we can set the polynomial

P(u) ≡ e+i τ
2 Q1(u − i/2)Q̃1(u + i/2) − e−i τ

2 Q1(u + i/2)Q̃1(u − i/2) − 2i sin
τ

2
Q2(u)

to zero through a unique choice of the dual roots ũ1.

• First, consider the case K1 = 0. Then it is trivial to see that we can always find a unique
polynomial Q̃1 = uK2 +

∑K2
n=1 anu

n−1 such that

e+i τ
2 Q̃1(u + i/2) − e−i τ

2 Q̃1(u − i/2) = 2i sin
τ

2
Q2(u)

because this amounts to solving K2 linear equations for K2 coefficients an with a non-
degenerate triangular matrix.

• Next, let us consider K1 � K2/2. First, we choose Q̃1 to satisfy K1 equations

Q̃1
(
u1

p

) = 2ie−i τ
2 sin

τ

2

Q2
(
u1

p − i/2
)

Q1
(
u1

p − i
) ≡ cp, p = 1, . . . , K1;

these conditions will define Q̃1(u) up to a homogeneous solution proportional to Q1(u):

Q̃1(u) = Q1(u)q̃1(u) +
K1∑

p=1

Q1(u)

Q′
1

(
u1

p

)(
u − u1

p

)cp,
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where q̃1(u) is some polynomial of degree K2 − 2K1. Now from (140) we note that with
this choice of Q̃1, we have

P
(
u1

p + i/2
)

Q2
(
u1

p + i/2
) = P

(
u1

p − i/2
)

Q2
(
u1

p − i/2
) = 0, p = 1, . . . , K3,

and thus

P(u) = Q1(u + i/2)Q1(u − i/2)p(u),

where

p(u) = ei τ
2 q̃1(u + i/2) − e−i τ

2 q̃1(u − i/2) − 2i sin
τ

2
q2(u)

and q2 is a polynomial. Thus, we are left to the same problem as above where K1 = 0.
For completeness, let us note that we can write q2(u) explicitly in terms of the original
roots u1 and u2:

q2(u) = Q2(u)

Q1(u + i/2)Q1(u − i/2)
− poles,

where the last term is a simple collection of poles at u = u1
p ± i/2 whose residues are

such that q2(u) is indeed a polynomial.
• We can see that the number of the solutions of (140) with K1 = K and K1 = K2 −K is the

same (see [63] for examples of states counting). Thus for each solution with K1 � K2/2,
we can always find one dual solution with K1 � K2/2 and in this way we prove our
statement for K1 � K2/2.

• Finally, let us stress the uniqueness of Q̃1. If K1 > K̃1, we have nothing to show since
we saw explicitly above how the bosonic duality constrains uniquely the dual polynomial
Q̃1. Let us then consider K1 < K̃1 and assume that we have two different solutions Q̃1

1
and Q̃2

1. Then from the duality relation (163) for either solution, we find

ei τ
2 Q1(u − i/2)

(
Q̃1

1(u + i/2) − Q̃2
1(u + i/2)

)
= e−i τ

2 Q1(u + i/2)
(
Q̃1

1(u − i/2) − Q̃2
1(u − i/2)

)
.

Evaluating this expression at u = u1,j + i/2, we find that Q̃1
1(u1,j )− Q̃2

1(u1,j ) = 0 so that
Q̃1

1(u1) − Q̃2
1(u1) = Q1(u)h(u) and therefore

ei τ
2 h(u + i/2) = e−i τ

2 h(u − i/2),

which is clearly impossible for polynomial h(u)—for large u, we can neglect i/2’s to
obtain eiτ = 1 thus leading to a contradiction.

Transfer matrix invariance under the bosonic duality. In this section, we will examine the
transformation properties of the transfer matrices under the bosonic duality. In appendix A,
we consider this problem for the general su(N |M) group. For now, let us just take T� for
su(1, 2) from (155). Using (163), we can express ratios of Q1’s through Q̃1 and Q2 so that

T�(u) = e−iφ2

(
+

2i sin τ
2 e−i τ

2 Q2
(
u − i

4

)
Q1

(
u + i

4

)
Q̃1

(
u + i

4

) + e−iτ Q̃1
(
u − 3i

4

)
Q̃1

(
u + i

4

)
)

Q2
(
u + 3i

4

)
Q2

(
u − i

4

)
(

u − 5i
4

u − 3i
4

)L

+ e−iφ1

(
−2i sin τ

2 e+i τ
2 Q2

(
u + 3i

4

)
Q1

(
u + i

4

)
Q̃1

(
u + i

4

) + e+iτ Q̃1
(
u + 5i

4

)
Q̃1

(
u + i

4

)
)(

u − 5i
4

u − 3i
4

)L

+ e−iφ3
Q2

(
u − 5i

4

)
Q2

(
u − i

4

)
(

u − 5i
4

u + i
4

)L

.
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Figure 10. The upper and the lower configurations of Bethe roots are dual to one another. The big
blue dots are middle node roots u2 and the yellow dots are auxiliary roots u1. The formation of
the cuts of stacks is manifest for this situation where the twists are large (like π/2) and the filling
fractions are small.

We see that for τ = φ1 − φ2, the terms with sin τ
2 cancel and we get the old expression for T�

with u1 replaced by ũ1 and φ1 ↔ φ2.
This simple transformation property of the transfer matrices automatically implies that

the Riemann surface defined by the algebraic equation (156) is untouched under the duality
transformation (to all orders in L), so that the duality can cause at most some reshuffling of
the sheets. However, as we will see in the following section, the sheets are not necessarily
exchanged as a whole—this operation will be in general done in a piecewise manner.

2.2.5. Examples of the dual configurations. In this section, we will study some curious
Bethe root distributions for the twisted su(1, 2) spin chain described by the nested Bethe
equations (140) and (141) and for the usual su(2) Heisenberg chain,(

u1,j + i
2

u1,j − i
2

)L

= − Q1(u1,j + i)

Q1(u1,j − i)
. (164)

Using the first example, we shall understand the importance of twists to stabilize big cuts of
stacks like those depicted in figures 7(a) and (b) and explain how the stacks get destroyed as
we decrease the twists.

We can dualize su(2) solutions of the twisted18 Heisenberg ring using the same duality
(148) as before with Q2(u) → uL. We will consider the dual solutions to the vacuum and to
a one-cut solution for the Heisenberg spin chain (164).

Big enough twists, small enough fillings and zippers. In the previous sections, we saw that the
introduction of twists in the NBA equations are needed to have a configuration with auxiliary
roots u1 close to some momentum-carrying roots u2. In figure 10, we have two numerical
solutions of Bethe equations which are related by the bosonic duality. In either of them, we
see a configuration of Bethe roots with a simple cut with middle roots only (in blue) and a cut
of stacks (containing blue and yellow roots). In this situation, it is clearly reasonable to think
of stacks as bound states of different types of roots and we see that they indeed condense into
multicolor cuts.

We will examine what happens when we decrease the twists (or increase filling fractions,
which is the same qualitatively). For simplicity we consider the configuration, dual to the
simple one-cut solution (K2 = K and K1 = 0) with no twist for the middle node roots,
φ2 − φ3 = 0, and some generic twist φ1 − φ2 = τ for the auxiliary roots. Bosonic duality will
leave untouched middle node roots u2 and create K new axillary roots u1.

In the upper left corner of figure 11, we applied the duality for some big twist τ = 4.6
while in the bottom right corner of the same figure we have a configuration of Bethe roots
with some small twist τ = 0.2. In the latter case, the auxiliary (yellow) roots clearly do not

18 For zero twist, the duality becomes degenerate and we will see below that it needs to be slightly modified.
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Figure 11. Disintegration of the stack configuration. When the twist is large (the top left corner),
the auxiliary roots form bound states together with the middle node ones and constitute a cut of
stacks. As we decrease the twist fluctuation n23 = 1 (the red crossed dot) enters the cut of stacks
(the top right corner) and subsequently partly disintegrates the cut of stacks forming some zipper-
like configuration (the bottom left corner). At some very small value of the twist, the configuration
of Bethe roots bears no resemblance to a cut of stacks.

form stacks together with the middle node (blue) roots! rather they form a bubble, containing
the original cut of roots u2.

To understand what happens in the scaling limit consider the position of n23 = 1
fluctuation, given by (206), which would be a small infinitesimal cut between p2 and p3.
In figure 11, the position of this virtual fluctuation is marked by a red crossed dot. When the
twist is big enough (and the filling fraction is small enough), the fluctuation is to the left from
the cut. When we start decreasing the twist the fluctuation approaches the cut (upper right
picture on fig 11), and at this point we have at the same time

p2(xn) − p3(xn) = 2π

and

p1(xn) − p3(xn) = 2π,

which implies p1 − p2 = 0 so that equation (162) becomes wrong at this point. When we
continue decreasing the twist, the fluctuation passes through the cut and becomes a n12 = 0
fluctuation. If we think of the fluctuation as being a small cut along the real axis, we see that
density becomes negative after crossing the cut:

0 < ρfluc
23 = −�(p2 − p3)

4π i
= −�(−p1 − p2)

4π i
= −ρfluc

12 .

This means that two branch points of the infinitesimal cut should not be connected directly,
but rather by some macroscopical curve with real positive density! This curve z(t) can be
calculated from the equation ρ(z) dz ∈ R

+ or

p1(z) − p2(z)

2π i
∂tz = ±1,

and the resulting curve is plotted in black on the two pictures given in the bottom in figure 11.
This is very similar to what happens when a fluctuation passes through the one-cut su(2)

configuration [83]. In the scaling limit, the black curve corresponds to the cut connecting p1

and p2 like in figure 12.
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Figure 12. In the scaling limit, the algebraic curves for eipj are the same before the duality
(blue cut only) and after the duality (when the auxiliary roots are created). The duality causes
an interchange of the sheets outside the bubble, while keeping the order untouched inside. This
follows from the need of a positive density for the ‘virtual’ cut. In other words, the duality indeed
only interchanges the sheets of the Riemann surface although it interchanges them in a piecewise
way.

At first sight, these figures seem to be defying our previous results. Indeed, we checked
in the previous section that the transfer matrices themselves are invariant under the bosonic
duality. Thus, the algebraic curves obtained from (156) should be the same after and before
duality and thus what one naturally expects is a simple interchange of Riemann sheets p1 ↔ p2

under the duality transformation. What really happens is a bit more tricky. The quasi-momenta
are indeed only exchanged but this exchange operation is done in a piecewise manner. That
is, if we denote the new quasi-momenta by pnew

i and the old ones by pold
i and if we denote the

bubble in figure 12 by R, then we have

pnew
1 =

{
pold

2 outside R
pold

1 inside R,
pnew

2 =
{

pold
1 outside R

pold
2 inside R,

pnew
3 = pold

3 ,

where the border of region R can be precisely determined in the scaling limit as explained
above.

Dualizing momentum-carrying roots. In this section, we will consider an example of the
application of the bosonic duality to the Heisenberg magnet19. The duality (148) can be
applied to the roots u1 obeying (164) provided we replace Q2(u) → uL. In fact if we want to
strictly consider the zero twist, we need a new duality because that one is clearly degenerate
in this limiting case. The proper modified expression is in this case

i(K̃1 − K1)u
L = Q1(u − i/2)Q̃1(u + i/2) − Q1(u + i/2)Q̃1(u − i/2),

and now the number of dual roots is L − K1 + 1. In contrast to what happened with non-zero
twists, here, the dual solution is not unique. Indeed if K̃1 > K1, we can as well use

Q̃α
1 ≡ αQ1 + Q̃1. (165)

All these solutions, parameterized by the constant α, have the same charges because the
transfer matrix is invariant under this transformation—see appendix A. Note that if initially
we have a physical state with K1 < L/2 roots, then all dual states (165) are unphysical with
K̃1 > L/2 violating the half-filling condition. Still, it is interesting, at the level of Bethe
equations, to understand how these solutions look like. First, let us single out a particular Q̃1

out of the various solutions to (165) so that

Q̃α
1 = uK̃1 +

K̃1−1∑
l=0

cα
l ul (166)

19 This section is benefitted a lot from the insightful discussions with T Bargheer and N Beisert whom we should
thank.
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Figure 13. Three configurations of Bethe roots dual to the ferromagnetic vacuum of the untwisted
Heisenberg spin chain. For each physical solution (below half filling) of the Bethe equations, there
is a one-parameter (α) family of dual unphysical solutions. To the left, α is large and the roots
distribute themselves along a circle with radius Rα given by (RαL)L = α. Decreasing α, the circle
will touch the fluctuations n = ±1. Similar to the previous section, the virtual infinitesimal cuts
become macroscopical bubble cuts with cusps at the position of the fluctuations. The intersection
points of the new cuts with the circle are connected by condensates, which are logarithmic cuts on
the algebraic curve [83].

becomes well defined through (165). We chose Q̃1 = Q̃0
1 to be the dual solution with

c0
0 = 0.

Consider for example the vacuum state for which Q1 = 1. Let us first take α to be very
large so that we can write

α + Q̃0
1 � α + (xL)L. (167)

We see that for large α, the dual roots will be on a circle of radius |α|1/L

L
. The corresponding

configuration is present on the first picture in figure 13. In this figure, we also plotted a circle
with this radius and one can see that the Bethe roots belong perfectly to the circle.

Let us now understand this configuration from the algebraic curve point of view. The
quasi-momenta p1 = −p2 ≡ p = 1

2x
− G, in the absence of Bethe roots, are simply given

by p = 1
2x

. Let us find the curves with positive densities and mode number n = 0. The
density is given by ρ(x) = 1

2π i
1
x

and we have to find the curves where ρ(x) dx is real. It is
easy to see that the only possibility is the circle centered at the origin with an arbitrary radius.
From the above arguments, one can expect that for any α the roots will belong to some circle.
However, we analyzed only the curves with the zero mode number and as we see in figure 13
for smaller α’s the circle develops four tails and two vertical lines. Along these vertical lines,
the roots are separated by i (for L → ∞) forming the so-called condensates or Bethe strings.
The tails meet at the points where the virtual fluctuation is, and the corresponding curves are
given by

p(z) ± π

π i
∂tz = ±1 (168)

analogous to the previous section. In the last configuration, in figure 13, the circle is completely
absent. There are only two n = ±1 curves which, at the interceptions, become a 4π jump log
condensate with the Bethe roots separated by i/2.

We also built dual configurations to the one-cut solution (see figure 14). The situation
is similar to the vacuum, the only difference being that two tails (out of four) do not tend to
touch each other, but rather end at the branch points of the initial cut.
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Figure 14. Dual configuration to a one-cut solution. Similar to the previous example for large α,
the dual roots are distributed along the big circle and cut (first picture). When α decreases and the
circle crosses the cut, we have to choose another curve with a positive density (second and third
pictures).

3. Quasi-classical quantization and fluctuations

3.1. Preface

In this section, we will study the semi-classical quantization of the AdS5×S5 Metsaev–Tseytlin
superstring [9]. We will see that the semi-classical quantization of this very nontrivial field
theory is not conceptually much difficult than the one-dimensional non-relativistic particle in
a smooth potential. Let us consider this very instructive example.

In terms of the quasi-momenta

p(x) ≡ h̄

i

ψ ′(x)

ψ(x)
, (169)

the Schrödinger equation for the wavefunction ψ takes the Riccati form

p2 − ih̄p′ = 2m (E − V ) . (170)

What do we know about p(x)? It is an analytical function which has, by definition (169), a
pole with residue

α = h̄

i
(171)

at each of the zeros of the wavefunction. For the Nth excited state, we will have N poles. On
the other hand, for very excited states, the right-hand side in (170) is much larger than h̄ and

p � pcl ≡
√

2m (E − V )

now describes a two-sheet Riemann surface. What happened was that, as N → ∞, the
poles in p(x) started to be denser and denser, condensing in a square root cut. Thus, in the
semi-classical limit, we retrieve the Bohr–Sommerfeld quantization

1

2πh̄

∮
C
pcl(z) dz � 1

2πh̄

∮
C
p(z) dz = N, (172)

where C encircles the cut. The first integral is precisely the action variable of the classical
motion.

When we consider more degrees of freedom, in particular when we move to higher
dimensions, let us say two, the situation is not just a little worse. Indeed, we have no proper
generic recipe, except from lattice calculations, to extract the quantum spectrum, or a part
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of it, of an interacting quantum field theory. However, if we are lucky, it might happen that
the theory is integrable. If it is the case, we can identify the action variables, apply the
Bohr–Sommerfeld condition and find the quasi-classical spectrum of the theory.

For a wide class of two-dimensional sigma models, this happens to be the case and the
procedure is known explicitly. The central object is a collection of quasi-momenta, pi(x),
whose derivative defines a many-sheet Riemann surface. These sheets can be connected by
several cuts, with each of which we can associate a filling fraction by integrating the quasi-
momenta around the cut as in (172). These are the action variables of the theory. Grosso
modo, these filling fractions measure the size of the cut. Finally, when going through these
cuts the quasi-momenta can jump by 2πn with n being an integer labeling the cut.

The superstring on the AdS5 × S5 background falls into this class of theories—the model
is known to be classically integrable [8, 84], as we showed in section 1. The algebraic curve
was built [14], and thus one can try to quasi-classically quantize the string. In the string
language, when we choose which Riemann sheets we connect by a cut, we choose which
string polarization, i.e. which degree of freedom, to excite. The number n and the filling
fraction associated with the cut are in strict analogy with the mode number and the amplitude
of a Fourier mode in a free theory such as the string in a flat space [14].

Going back to our simple example, we can see that the existence of such discrete equations
is indeed highly natural. For this purpose let us consider a simple harmonic oscillator,
V = mω2x2

2 . From (170), it follows that p(x) = imωx + O(1/x). Since the quasi-momentum
is a meromorphic function with N poles on the real axis, it must be given by

p(x) = imωx +
h̄

i

N∑
i=1

1

x − xi

.

Then, from the large x behavior in (170) we immediately read

E = h̄ω
(
N + 1

2

)
while from the cancelation of each of the xi poles in the same equation we get20

xi = h̄

2ωm

N∑
j �=i

1

xi − xj

, (173)

which strongly resembles the equations one finds in the Bethe ansatz context.
When we expand the superstring action around some classical solution, characterized

by some conserved charges, we obtain, for the oscillations, a quadratic Lagrangian whose
quantization yields, for the semi-classical spectrum,

E = Ecl +
∑
A,n

NA,nEA,n, (174)

where we have dropped the zero energy excitation and denoted the number of quanta with
energy EA,n by NA,n. The subscript A labels the several possible string polarizations we can
excite while the mode number n is the Fourier mode of the quantum fluctuation. In this
paper, we shall address the question of finding this quasi-classical spectrum for the AdS5 ×S5

superstring using the algebraic curve mentioned above.
Let us explain the idea behind the computation. There are basically two main steps

involved. First, we construct the curve associated with the classical solution around which
we want to consider the quantum fluctuations following the procedure explained in section 1.
The second step consists of considering the small excitations around this classical solution in

20 Its solution is given by the zeros of the Hermite polynomials, HN

(√
2mω

h̄
xi

)
= 0.
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the spirit of [57]. In terms of the algebraic curve, this means adding some microscopic cuts to
this Riemann surface. By microscopic cuts we mean some finite number of poles, just like in
the simple example (171). Then, by construction, the energy of the perturbed configuration is
quantized as in (174).

As an application of this method we compute the fluctuation frequencies around the
circular su(2) and sl(2) string. These solutions belong to a family of circular solutions whose
quasi-momenta we will compute explicitly in appendix B. The frequencies we compute in
this way were obtained in [85, 86] and [87, 88] by direct analysis of the expanded Lagrangian
around these solutions in the Metsaev–Tseytlin GS superstring action.

3.2. Circular string solutions

In this section, we will write down an important class of rigid circular strings studied in [87].
As we will explain below, they are particularly simple from the algebraic curve point of view
and will therefore provide us an excellent playground to check our method for some simple
choice of parameters. In terms of the AdS5 and S5 embedding coordinates, we can represent
this general class of string solutions with global charges E = √

λE, J1 = √
λJ1, . . . , as [87]

u2 + iu1 =
√

J3

w3
ei(w3τ+m3σ), v2 + iv1 =

√
S2

w2
ei(w2τ+k2σ),

u4 + iu3 =
√

J2

w2
ei(w2τ+m2σ), v4 + iv3 =

√
S1

w1
ei(w1τ+k1σ), (175)

u6 + iu5 =
√

J1

w1
ei(w1τ+m1σ), v6 + iv5 =

√
E
κ

eiκτ ,

where the equations of motion and Virasoro constraints impose

1 =
3∑

i=1

Ji

wi

, 1 = E
κ

−
2∑

j=1

Sj

wj

, 0 =
2∑

j=1

kjSj +
3∑

i=1

miJi ,

w2
j = κ2 + k2

j , κ2 =
2∑

j=1

Sj

2k2
j

wj

+
3∑

i=1

Ji

w2
i + m2

i

wi

, (176)

w2
i = ν2 + m2

i , ν2 ≡
3∑

i=1

Ji

w2
i − m2

i

wi

.

As explained in appendix B, for this family of solutions the representative g can be written as

g = eϕσ σ+ϕτ τ · g0,

where ϕσ,τ are linear combinations of Cartan generators and g0 is a constant matrix. Then we
see that the current

J = −g−1 dg

and therefore also the flat connection A(x) in (9) are constant matrices! Then the computation
of the path order exponential (10) is trivial and the quasi-momenta p(x) are simply obtained
from the eigenvalues of 2π

i A(x). For a detailed account, see appendix B.
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Figure 15. Analytical structure of the quasi-momenta p(x) of a one-dimensional system. Left:
for low-lying states, p(x) is a collection of poles. Right: for high energy states, the poles condense
into a square root branch cut.

3.3. Frequencies from the algebraic curve

In this section, we will consider the quasi-classical quantization of the AdS5 × S5 superstring
in the language of the algebraic curve. As an example, we will find the low-lying energy
spectrum for the excitations around some simple classical string solutions.

As we have already mentioned in sections 1 and 1.1.1, the exact quasi-momenta are made
out of a large collection of poles. From (14), we infer the residue of each pole,

p �
Sn∑

a=k

α(xk)

x − xk

+ · · · ,

with

α(x) = 4π√
λ

x2

x2 − 1
. (177)

These poles may then condense into square root cuts forming a classical Riemann surface
like in figure 15. The filling fraction and mode number of the cuts are in strict analogy with
the amplitude and mode number of a Fourier mode in the usual flat space string. Then, to
consider the quantum fluctuations around this classical solution amounts to adding small cuts,
i.e. poles, to this curve. The key ingredient allowing us to do so is the knowledge of the residue
(177) just like in the example (171) in section 1. The several possible choices of sheets to be
connected by these poles correspond to the several possible polarizations of the superstring,
i.e. to the different quantum numbers. The 16 physical excitations are the 4 + 4 modes in AdS5

and S5 (figure 17) plus the 8 fermionic fluctuations (figure 18).
Let us give a bit more of flavor to the above discussion. As we mentioned in section 1, the

equations describing the eight-sheet quasi-momenta can be discretized [20] yielding a set of
Bethe ansatz equations for the roots xi making up the cuts. The resulting equations resemble
(173) with an extra 2πni on the left-hand side:∑

j �=i

1

xi − xj

= 2πni + V (xi).

This means that we can think of xi as being the position of a particle interacting with many
other particles via a two-dimensional Coulomb interaction, placed in an external potential21

and feeling an external force 2πni . What we are doing is, then, first considering a large
number of particles which will condense in some disjoint supports, the cuts, with each cut
being made out of particles with the same mode number ni . Then we add an extra particle with
some other mode number n. At the leading order, two things happen. The particle will seek
its equilibrium point in this background and will backreact, shifting this background slightly
by its presence [57]. The (AdS global time) energy E of the new configuration is then shifted.
When adding N particles, we get precisely the quantum steps in the spectrum, i.e. (174).

21 In (173), the potential is a quadratic one; for the actual Bethe equations, it is something else.
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Figure 16. A possible analytical stricture of the quasi-momenta of an integrable sigma model.
Many types of cuts are now possible. Cuts can join different sheets and each cut is marked by its
‘mode number’ nij . In the flat space limit, they become numbers of Fourier modes. The number
of microscopical poles constituting the given cut is called a ‘filling fraction’ and can be calculated
as a contour integral (172).

Figure 17. Some configuration of poles on the algebraic curve corresponding to the S5 excitations
(red) and AdS5 excitations (blue). The black line denotes poles at ±1, connecting four sheets with
equal residues. The crosses correspond to residue +α(x), while circles to residue −α(x). The
physical domain of the surface lies outside the unit circle.

Technically, the computations can be divided into two main steps. In what follows, we
will use notation (13) intensively. We must solve (11) for all cuts of the Riemann surface
where we now have p(x) → p(x) + δp(x), where p(x) is the quasi-momentum associated
with the classical solution.

• When applied to the microscopic cut, i.e. pole, equation (11) gives us, to leading order,
the position x

ij
n of the pole:

pi

(
xij

n

) − pj

(
xij

n

) = 2πn,
∣∣xij

n

∣∣ > 1, (178)

where i < j take values 1̂, 2̂, 3̂, 4̂, 1̃, 2̃, 3̃, 4̃ and indicate which two sheets share the pole.
We refer to domain |x| > 1 as a physical domain. The interior of the unit circle is just the
mirror image of the physical domain, as we saw in the previous section (15).

• Then, to find δp, and in particular the energy shift δE, we must solve the same equations
but now in the macroscopic cuts:

δp+
i − δp−

j = 0, x ∈ Cij
n . (179)

This linear problem is to be supplemented with the known analytical properties of δp(x),
namely the asymptotic behavior presented below and the simple pole singularities with
residues (177). In this way, we compute the backreaction described above.
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Figure 18. Some configuration of poles on the algebraic curve corresponding to eight fermionic
excitations. The black line denotes poles at ±1, connecting four sheets with equal residues. The
crosses correspond to residue α(x), while circles to residue −α(x). The physical domain of the
surface lies outside the unit circle.

Before proceeding, it is useful to introduce some simple notation. We shall consider N
ij
n

excitations with mode number n between sheets pi and pj such that

Nij ≡
∑

n

Nij
n

is the total number of poles connecting these two sheets. Moreover, each excitation has its own
quantum numbers according to the global symmetry. The S5, AdS5 and fermionic excitations
can then be identified as the several possible choices of sheets to be connected (see figures 17
and 18),

S5, (i, j) = (1̃, 3̃), (1̃, 4̃), (2̃, 3̃), (2̃, 4̃)

AdS5, (i, j) = (1̂, 3̂), (1̂, 4̂), (2̂, 3̂), (2̂, 4̂)

Fermions, (i, j) = (1̃, 3̂), (1̃, 4̂), (2̃, 3̂), (2̃, 4̂),

(1̂, 3̃), (1̂, 4̃), (2̂, 3̃), (2̂, 4̃)

(180)

The 16 physical degrees of freedom of the superstring are precisely these 16 elementary
excitations, also called momentum-carrying excitations [14, 19].

When adding extra poles to the classical solutions, their energy will be shifted by

δE = δ� +
∑
AdS5

Nij +
1

2

∑
Ferm

Nij , (181)

where we isolated the anomalous part δ� of the energy shift from the trivial bare part. Then,
it is convenient to recast (17), for the excitations, as

δ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p̂1

p̂2

p̂3

p̂4

p̃1

p̃2

p̃3

p̃4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 4π

x
√

λ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+δ�/2 +N1̂4̂ + N1̂3̂ +N1̂3̃ + N1̂4̃

+δ�/2 +N2̂3̂ + N2̂4̂ +N2̂4̃ + N2̂3̃

−δ�/2 −N2̂3̂ − N1̂3̂ −N1̃3̂ − N2̃3̂

−δ�/2 −N1̂4̂ − N2̂4̂ −N2̃4̂ − N1̃4̂

−N1̃4̃ − N1̃3̃ −N1̃3̂ − N1̃4̂

−N2̃3̃ − N2̃4̃ −N2̃4̂ − N2̃3̂

+N2̃3̃ + N1̃3̃ +N1̂3̃ + N2̂3̃

+N1̃4̃ + N2̃4̃ +N2̂4̃ + N1̂4̃

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (182)
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These filling fractions Nn
ij are not independent. Any algebraic curve must obey the Riemann

bilinear identity (see equation (3.38) and (3.44) in [14]). Since this was already the case for
the classical solution around which we expand, the new filling fractions are constrained by∑

n

n
∑
Allij

Nij
n = 0, (183)

which is nothing but the string level matching condition in the algebraic curve language.
It is also important to note that sign of the residues can be summarized by the following

formula:

res
x=x

ij
n

p̂k = (δik̂ − δjk̂)α
(
xij

n

)
Nij

n , res
x=x

ij
n

p̃k = (δjk̃ − δik̃)α
(
xij

n

)
Nij

n , (184)

with k = 1, 2, 3, 4 and i < j taking values 1̂, 2̂, 3̂, 4̂, 1̃, 2̃, 3̃, 4̃, as summarized in figures 17
and 18.

In the following sections, we shall analyze the quantum fluctuations around some simple
classical solutions belonging to the family of rigid circular strings (175). We will do it in three
main steps. First, we compute the quasi-momenta22 associated with each classical solution
as explained in section 3.2 and in greater detail in appendix B. Then we shall consider the
fluctuations around the classical solution which appear as new poles in the quasi-momenta.
As explained above, we start by finding the position of these new roots using (178) and then
we shall compute the perturbation δp of the quasi-momenta by using, again, the analytical
properties described in section 1.1.1 plus the knowledge of the poles’ positions found in the
second step.

We can already note that, using this procedure, one relies uniquely on considerations
of analyticity and need not introduce any particular parameterization of the group element
g(σ, τ ) for the fluctuations around the classical solution, in contrast to what is usually done in
this type of analysis [85–88]. It is also nice to see that the fermionic and bosonic frequencies
appear, in our approach, on a completely equal footing, both corresponding to simple poles
which differ only by the sheets they unite—see figures 17 and 18. Finally, in principle, we can
apply our method to any classical solution whereas the same generalization seems to be highly
non-trivial to do directly in the action since we no longer have a simple field redefinition to
make it time and space independent as was the case in [86, 88]. This method will allow us
to prove some general statements about the quasi-classical spectrum and its relation to the
finite-size corrections in the BS equations.

3.3.1. The BMN string. We shall consider the simplest possible solution amongst the family
of circular strings presented in section 3.2, the rotating point-like BMN string [89] moving
around a big circle of S5. For this solution, all spins except for

J1 = J

are set to zero. Then we have m1 = 0, w1 = J , E = κ = J . For this solution the connection
A(x) presented in appendix B is not only constant but also diagonal, so we immediately find

p̃1,2 = −p̃3,4 = p̂1,2 = −p̂3,4 = 2πJ x

x2 − 1
. (185)

22 Due to the simplicity of these solutions we could have computed the quasi-momenta by an alternative method,
namely using just the analytical properties presented in section 1.1.1. This was done for the su(2) and sl(2) circular
solutions in [18] and [24] respectively.
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We see that this is indeed the simplest eight-sheet algebraic curve we could have built—it has
neither poles nor cuts connecting its sheets other than the trivial ones at x = ±1 (16).

We shall now study the quantum fluctuations around this solution. For the sake of clarity,
we shall not write explicitly many of the quantities computed in the intermediate steps—they
can be found in appendix C.

To consider the 16 types of physical excitations, we add all types of poles in figures 17
and 18. From (178) we find that the poles in the physical domain with |x| > 1, for this simple
case, are all located at the same position

xij
n = xn = 1

n

(
J +

√
J 2 + n2

)
. (186)

Now we must find the quasi-momenta p(x) + δp(x)

• with poles located at (186) with residues (184) connecting the several sheets,

• obeying the x → 1/x symmetry property (15),

• with residues ±1 grouped as in (16),

• with large x behavior given by (182).

From the requirements listed above, one can easily write the expression for the quasi-
momenta. For example,

δp̂2 = â +
δα+

x − 1
+

δα−
x + 1

+
∑

i=3̂,4̂,3̃,4̃

∑
n

α
(
x 2̂i

n

)
N 2̂i

n

x − x 2̂i
n

−
∑

i=3̂,4̂,3̃,4̃

∑
n

α
(
x 1̂i

n

)
N 1̂i

n

1/x − x 1̂i
n

(187)

δp̂3 = b̂ +
δβ+

x − 1
+

δβ−
x + 1

−
∑

i=1̂,2̂,1̃,2̃

∑
n

α
(
x 3̂i

n

)
N 3̂i

n

x − x 3̂i
n

+
∑

i=1̂,2̂,1̃,2̃

∑
n

α
(
x 4̂i

n

)
N 4̂i

n

1/x − x 4̂i
n

, (188)

where â, b̂ and δα±, δβ± are constants to be fixed and the last terms ensure the right poles in
physical domain for δp̂1,4(x) = −δp̂2,3(1/x). Similar expressions can be immediately written
down for δp̂2,3 with the introduction of two new constants ã and b̃.

At this point, we are left with the problem of fixing the eight constants

â, b̂, ã, b̃, δα+, δα−, δβ+, δβ−.

This is precisely the number of conditions one obtains by imposing the 1/x behavior at large
x for the quasi-momenta (182). The asymptotic of p̂2, p̂3, p̃2, p̃3 fixes the first four constants
while the remaining four equations, solvable only if the level matching condition (183) is
satisfied, fix the remaining coefficients and yield

δE =
∑
All

∑
n

√
n2 + J 2 − J

J
Nij

n +
∑
AdS5

Nij +
1

2

∑
Ferm

Nij , (189)

where we indeed recognize the famous BMN frequencies [89] in the anomalous part of the
energy shift.

3.3.2. The circular string in S3, the one-cut su(2) solution. The next less trivial example
is the simple su(2) rigid circular string [85]. Still it is simple enough so that all results
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are explicit. This solution is obtained from the family of circular strings in section 3.2 by
setting

m1 = −m2 = m, J1 = J2 = J

with all other spins set to zero. For this solution,

E = κ =
√
J 2 + m2.

The quasi-momenta can be computed as explained in appendix B. The AdS5 quasi-momenta
are obtained as for the BMN string

p̂1,2 = −p̂3,4 = 2πκx

x2 − 1
, (190)

while for the S5 components p̃i we find that this solution corresponds to a one-cut between p̃2

and p̃3 with mode number k = −2m, given by [18]

⎛
⎜⎜⎝

p̃1

p̃2

p̃3

p̃4

⎞
⎟⎟⎠ = 2π

⎛
⎜⎜⎜⎜⎜⎝

+ x
x2−1K(1/x)

+ x
x2−1K(x) − m

− x
x2−1K(x) + m

− x
x2−1K(1/x)

⎞
⎟⎟⎟⎟⎟⎠ , K(x) ≡

√
m2x2 + J 2, (191)

where we assume that m > 0 and branch cut goes to the left of x = −1 so that

K(x) = mx + O(1/x),K(x) = J + O(x)

K(1) = K(−1) = κ > 0.

In the rest of this section, we will compute the quantum spectrum of the low-lying
excitations around this solution. For simplicity, we will consider the AdS5, S

5 and fermionic
fluctuations independently assuming the level matching condition (183) to be satisfied for
each of the sectors separately. The result we give, however, is valid under the softer constraint
(183) for all sectors, as one can easily check.

Method of computation. Suppose we want to compute the variation of the quasi-momenta
δp(x) when a small pole is added to some general finite gap solution with some square root
cuts. Since the branch points will be slightly displaced, we conclude that δp(x) behaves like
∂x0

√
x − x0 ∼ 1/

√
x − x0 near each such point.

We deal with a one-cut finite gap solution. Then, for δp̃2, we can assume the most general
analytical function with one branch cut, namely f (x) + g(x)/K(x) where f and g are some
rational functions and K(x) was defined in (191). To obtain δp̃3, it suffices to note that (179)
simply tells us that δp̃3 is the analytical continuation of δp̃2 through the cut. The remaining
quasi-momentum δp̃1,4 can then be obtained from this by the inversion symmetry (15). We
conclude that

⎛
⎜⎜⎝

δp̃1

δp̃2

δp̃3

δp̃4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

−f (1/x) − g(1/x)

K(1/x)

f (x) + g(x)

K(x)

f (x) − g(x)

K(x)

−f (1/x) + g(1/x)

K(1/x)

⎞
⎟⎟⎟⎟⎟⎠ . (192)

The only singularity of δp̃2 apart from the branch cut is eventual simple poles at ±1 and
xn and so the same must be true for f (x) and g(x). Then, just like in the previous example,
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these functions are uniquely fixed by the large x asymptotics (182) and by the residues at xn

(184) of the quasi-momenta.
Finally, since the AdS5 part of the quasi-momenta of the non-perturbed finite gap solution

has no branch cuts their variations δp̂i have the same form (187) and (188) as for the simplest
BMN string.

The AdS5 excitations. This part is the simplest. The excitations live in the empty AdS5 sheets
where the only impact of the S5 classical solution comes through the Virasoro constraints, by
the residues at ±1 (16). Thus, p̃ are nonperturbed and δp̂i are the same as in the BMN case
(187), (188) with only AdS5 filling fractions N’s being nonzero. Indeed, comparing (185) and
(190) we see that we can completely recycle the previous computation provided we replace J
by κ in expression (186) for the pole’s position. This immediately leads to

δE =
∑
AdS5

∑
n

√
J 2 + m2 + n2

√
J 2 + m2

Nij
n . (193)

The S5 excitations. We must now analyze the shift in quasi-momenta due to the excitation of
the algebraic curve by the four types of poles (1̃3̃, 2̃4̃, 2̃3̃, 1̃4̃). Since the AdS quasi-momenta
are trivial, with no cuts, we obtain for δp̂ the same kind of expression we had for the BMN
string (185), that is,

δp̂1,2 = −δp̂3,4 = 2πδE√
λ

x

x2 − 1
, (194)

where the constant factor was fixed by the asymptotics (182)

δp̂1,2 � −δp̂3,4 � 2πδE√
λ

1

x
.

Due to the Virasoro constraints, the poles at ±1 in the AdS5 and S5 sectors are synchronized
(16) so that we merely need to compute f (x) and g(x) from the large x asymptotics (182)
and the residue condition (184) and extract, from these two functions, the residues at ±1.
This is done in appendix D.1. Let us just provide a glimpse of reasoning involved. Since the
difference

δp̃3 = f (x) − g(x)/K(x)

must have a single pole at x 1̃3̃
n with residue α

(
x 1̃3̃

n

)
whereas the sum

δp̃2 = f (x) + g(x)/K(x)

must be analytical, we can, in this way, read the residues of both f and g at this point. Similar
reasoning should be carried over for all the other excitations and for the points x = ±1 and
leads to the ansatz (D.1), (D.2) where the only three constants left to be found can be fixed by
the large x asymptotics of the quasi-momenta.

One can then read off the energy shift from the large x asymptotics of the quasi-momenta:

δE =
∑

n

(
N 1̃3̃

n + N 2̃4̃
n

)x 1̃3̃
n (m + n) − J − K

(
x 1̃3̃

n

)
κ

+ N 1̃4̃
n

nx 1̃4̃
n − 2J

κ
+ N 2̃3̃

n

2m + n

x 2̃3̃
n κ

(195)

in terms of the positions of the roots obtained from the original algebraic curve through (178).
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Fermionic excitations. We have eight fermionic excitations but since p̂1 = p̂2 = −p̂3 = −p̂4

and p̃1,2 = −p̃4,3, we will get the same result for the (1̂3̃, 2̂3̃, 3̂2̃, 4̂2̃) poles and possibly another
result for the (1̂4̃, 2̂4̃, 3̂1̃, 4̂1̃) excitations. We can repeat the same kind of calculations we did
for the S5 excitations to fix completely the quasi-momenta—see appendix D.2. Then, from
the asymptotics (182) we get

δ� =
∑

n

(
N 1̂3̃

n + N 2̂3̃
n + N 3̂2̃

n + N 4̂2̃
n

)m + n

x 1̂3̃
n κ

+
(
N 1̂4̃

n + N 2̂4̃
n + N 3̂1̃

n + N 4̂1̃
n

)nx 1̂4̃
n − J − κ

κ
.

(196)

3.3.3. The circular string in AdS3, the one-cut sl(2) solution. In section 3.3.2, we analyzed
in detail a simple su(2) solution with a particular mode number k = −2m. In appendix E,
we repeat the analysis for the general sl(2) circular string [87, 88] which also corresponds
to a one-cut algebraic curve but this time with an arbitrary mode number k for the cut [24].
This solution is again contained in the family of circular strings written in section 3.2. It
corresponds to two non-zero spins:

S1 = S, J1 = J

with mode numbers m1 = m and k1 = k constrained by the level matching condition

Sk + Jm = 0

and frequencies w1 = J and w1 = w fixed by

w3 − (k2 + m2 + J 2)w + 2kmJ = 0. (197)

For this solution κ = √
w2 − k2 and the energy can be found from

E = κ

(
1 +

S
w

)
.

In appendix E, we present the quasi-momenta associated with this classical solution and
compute the fluctuation frequencies as we did for the su(2) string. These results, together with
those for the su(2) circular string, are summarized and discussed in the following sections.

3.4. Results, interpretation and one-loop shift

In this section, we list all our results and introduce the notations usually used in the literature.
In the following section, we shall analyze them, compare them and draw some conclusions.

3.4.1. Simple su(2) circular string. In section 3.3.2, we found the level spacings around the
simple su(2) circular solution, that is, the fluctuation frequencies of the effective quadratic
Lagrangian obtained by expanding the Metsaev–Tseytlin action (3) around this classical
solution. In [86], this computation was performed keeping in mind the stability analysis and
computation of the one-loop shift. The various frequencies and corresponding degeneracies
and origin can be summarized in table 1.23 Using the notation introduced in this table, we can
replace the explicit expressions for the position of the roots found from (178) and recast our

23 By expanding the GS action without imposing the Virasoro conditions from the beginning, one obtains, apart from
the frequencies listed in the above table, some massless modes with ω = n [85]. In section 5, we will see these
Virasoro modes from the Bethe ansatz point of view if an extra level of particles with rapidities θ is introduced [90].
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Table 1. Simple su(2) frequencies.

Eigenmodes Notation

S5
√

2J 2 + n2 ± 2
√
J 4 + n2J 2 + m2n2 ω

S±
n√

J 2 + n2 − m2 ωS
n

Fermions
√
J 2 + n2 ωF

n

AdS5
√
J 2 + n2 + m2 ωA

n

Table 2. General sl(2) frequencies.

Eigenmodes Notation

AdS5 (ω2 − n2)2 + 4S
w κ2ω2 − 4E

κ
(ωw − kn)2 = 0 ω

A+
n > ω

A−
n√

n2 + κ2 ωA
n

Fermions

√(
n +

√
w2−J 2

2

)2
+ 1

2 (κ2 + J 2 − m2) ωF
n

S5
√
J 2 + n2 − m2 ωS

n

results (193), (195), (196) as

κδE =
∑

n

(
N 1̃3̃

n + N 2̃4̃
n

) (
ωS

n+m − J
)

+ N 2̃3̃
n ω

S−
n+2m + N 1̃4̃

n

(
ωS+

n − 2J
)

+
∑

n

(
N 1̂4̃

n + N 2̂4̃
n + N 3̂1̃

n + N 4̂1̃
n

) (
ωF

n − J +
κ

2

)
+
∑

n

(
N 1̂3̃

n + N 2̂3̃
n + N 3̂2̃

n + N 4̂2̃
n

) (
ωF

n+m − κ

2

)
+
∑

n

(
N 1̂3̂

n + N 1̂4̂
n + N 2̂3̂

n + N 2̂4̂
n

)
ωA

n . (198)

We note the appearance of constant shifts and relabeling of the frequencies when compared to
those in table 1. We shall discuss this point below.

3.4.2. General sl(2) circular string. The same analysis can be carried over for the sl(2)

circular string. In [87, 88], these frequencies were computed and the result is summarized in
table 2.24

In the notation of the above table, the results (E.12), (E.9), (E.5) and (E.4) derived in
appendix E can be put together as

κδE =
∑

n

(
N 1̂3̂

n + N 2̂4̂
n

)
ωA

n + N 2̂3̂
n

(
ω

A−
n−k + w

)
+ N 1̂4̂

n

(
ω

A+
n+k − w

)
+
∑

n

(
N 2̂3̃

n + N 2̂4̃
n + N 3̂1̃

n + N 3̂2̃
n

) (
ωF

n+m/2−k/2 − ωF
m/2−k/2 +

1

2
κ

)

+
∑

n

(
N 1̂3̃

n + N 1̂4̃
n + N 4̂1̃

n + N 4̂2̃
n

)(
ωF

−n−m/2−k/2 − ωF
−m/2−k/2 +

1

2
κ

)

+
∑

n

(
N 1̃3̃

n + N 1̃4̃
n + N 2̃3̃

n + N 2̃4̃
n

)(
ωS

n+m − J
)
. (199)

24 The results in this table are slightly simplified compared to those usually presented in the literature, especially the
fermionic frequencies.
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3.4.3. Explanation of shifts. Let us first look at the su(2) result (198) and pick one of the
frequencies, say the first one

ωS
n+m − J . (200)

We find two kinds of shifts relatively to the frequencies listed in the table 1, namely the
constant shift J and the shift in the Fourier mode n → n + m, the same shifts we observe for
the sl(2) frequencies.

Let us understand the origin of these shifts. For this purpose, consider a system of two
harmonic oscillators,

Lx = ẋ2
1 + ẋ2

2

2
− ω2

2

(
x2

1 + x2
2

)
,

and suppose that, instead of quantizing this system, we chose to quantize the system obtained
by rotating x1, x2 with angular velocity J , i.e. we move to the y frame

x1 + ix2 = (y1 + iy2) eiJ t .

Then, we obtain25

Hy = Hx + JLz,

where Lz is the usual angular momentum, so that

Ey
n1,n2

= ω + (ω − J ) n1 + (ω + J ) n2.

Thus for the radially symmetric wavefunction, for which n1 = n2 (and in particular for the
ground-state energy), the constant shifts cancel and we obtain the same energies as for the first
system. That, in general, the two results are different is obvious since the energy depends on
the observer.

The constant shifts mentioned above have exactly this origin. In fact, when expanding
the Metsaev–Tseytlin string action around the classical su(2) circular string, one obtains an
effective time- and space-dependent Lagrangian whose σ, τ dependence can be killed by a
change of frame:

δX = R(σ, τ)δY,

where δX are the (bosonic) components of the fluctuations and R is a time- and space-
dependent rotation matrix—see, for instance, expression (2.14) in [86]26. The same kind of
field redefinitions is also present for the fermion fields. The time dependence of the rotation
matrix gives the constant shifts as in the simple example we just considered while the space
dependence in this change of frame is responsible for the relabeling of the mode numbers.

To make contact with the algebraic curve, let us return to the frequency (200) we picked
as illustration. It corresponds to a pole from sheet p̃1 to p̃3 (or from p̃2 to p̃4) whose position
is fixed by (178). The result in the rotated frame, ωS

n , would correspond to a pole with mode
number n + m whose position is given by

p̃1
(
x 1̃3̃

n

) − p̃3
(
x 1̃3̃

n

) = 2πn + 2πm.

When plugging the actual expressions (191) for p̃1 and p̃3 in this equation, we see that 2πm

disappears and the equation looks simpler than (178). However, for several cut solutions
there is no such obvious choice of mode numbers (or field redefinition which kills the time
dependence in the Lagrangian).

25 In the y frame, the Lagrangian takes the form 2Ly = ẏ2
1 + ẏ2

2 − (ω2 − J 2)
(
x2

1 + x2
2

)
+ 2J y1ẏ2 − 2J ẏ1y2.

26 The same is true for the sl(2) circular string. The authors have moved to a different frame through a time- and
space-dependent rotation—see, for instance, equation (4.11) in [88]—and should, therefore, measure shifted energies.
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3.4.4. One-loop shift and prescription for labeling fluctuation frequencies. To compute the
one-loop shift to the classical energy of a given solution, according to [53], one has to sum
over all energies of the modes in the expansion around the classical configuration

δE1−loop = 1

2κ
lim

N→∞

N∑
n=−N

(
8∑

i=1

�B
i,n −

8∑
i=1

�F
i,n

)
.

However, the right-hand side is hard to define rigorously. For n → ±∞, each frequency
behaves like

�B
i,n � |n| ± cB

i + dB
i , �F

i,n � |n| ± cF
i + dF

i ,

and thus the sum is sensible to the labeling of the frequencies. The seemingly innocent
redefinition

�B
i,n → �B

i,n+ki
, �F

i,n → �F
i,n+li

, (201)

with integer shifts constrained by
∑

i ki − li = 0 to ensure the convergence of the sum, does
change the result

δE1−loop → δE1−loop +
∑(

k2
i − l2

i + 2cB
i ki − 2cF

i li
)
. (202)

In appendix F, we discuss in greater detail the effect of these shifts.
One way to compute the frequencies is to expand the Metsaev–Tseytlin action around

some classical solution. Generically, the resulting quadratic Lagrangian is time and space
dependent. To eliminate this dependence, when possible, a field redefinition is performed.
However, there are several ways to do the field redefinition to get a time- and space-independent
action. Different choices will give different sets of frequencies related by transformations such
as (201) and will therefore lead to different results. In appendix F, we analyze this kind of
dangers by focusing on two explicit examples. Thus, we need a solid prescription for the
labeling of the frequencies.

Suppose we were semi-classically quantizing around some classical string solution in
a flat space. Then we would expect to find some fluctuation frequencies, the zero modes,
corresponding to an overall translation of the string solution and which should, therefore,
carry no energy at all. Then the usual prescription is to take �i,0 = 0.

The zero modes should also exist for a string in the AdS5 × S5 space with a large number
of isometries. Indeed, let us take our results and denote the contribution at n = 0 in (198) and
(199) by δE

su(2)
0 and δE

sl(2)
0 respectively. Then, we find that they are equal and given by

δE0 =
∑
AdS5

Nij +
1

2

∑
Ferm

Nij . (203)

In other words, the contribution to the anomalous part δ� of zero modes for our labeling is
zero! Thus, the prescription we used seems to be the precise analogue of the flat space Fourier
modes prescription.

Moreover, by construction, we have a good BMN limit. That is, when in the limit of very
small cuts with m → 0 we recover the result (189) without any unusual shifts27.

27 This is not the case for the frequencies listed in table 2 for instance. For example, from this expression, we find,

for the fermionic frequencies, ωF
n �

√
(n + k/2)2 + J 2. See also the discussion in appendix F.
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Table 3. General su(2) frequencies.

Eigenmodes Notation

S5 (ω2 − n2)2 − 4J2
w2

(ωw1 − m1n)2 − 4J1
w1

(ωw2 − m2n)2 = 0 ω
S+
n > ω

S−
n√

n2 + ν2 ωS
n

Fermions

√(
n −

√
w2

1 +m2
2−κ2

2

)2

+ J1w1 + J2w2 ωF
n

AdS5

√
n2 + κ2 ωA

n

Then, from (198) and (199), we can write the one-loop shifts for the one-cut circular
solutions28:

E
su(2)
one-loop = 1

2κ
lim

N→∞

N∑
n=−N

4ωA
n + ωS

n+m + ω
S−
n+2m + ωS+

n − 4ωF
n − 4ωF

n+m,

E
sl(2)
one-loop = 1

2κ
lim

N→∞

N∑
n=−N

2ωA
n + ω

A+
n+k + ω

A−
n−k + 4ωS

n+m − 4ωF

n+ m−k
2

− 4ωF

−n− m+k
2

.

3.4.5. General su(2) results. Another interesting solution contained in the family of circular
solutions described in section 3.2 is the generalization of the simple su(2) solution to the
case of two non-equal spins J1,2 with two different mode numbers m1,2. The fluctuation
frequencies associated with this solution can be listed in table 3 [87].29

Now, armed with our prescription, we can write the one-loop shift unambiguously.
Imposing

• good BMN limit (189) for vanishing filling fractions,
• proper zero-mode behavior with n = 0 frequencies having trivial anomalous, part (203).
• for m1 = −m2 = m we should retrieve the simple su(2) result (198),

we get (for m1 + m2 � 0)

κδE =
∑

n

(
N 1̃3̃

n + N 2̃4̃
n

) (
ωS

n+m1
− w1

)
+ N 2̃3̃

n

(
ω

S−
n+m1−m2 + w2 − w1

)
+
∑

n

N 1̃4̃
n

(
ωS+

n+m1+m2
− w2 − w1

)
+
∑

n

(
N 1̂3̂

n + N 1̂4̂
n + N 2̂3̂

n + N 2̂4̂
n

)
ωA

n

+
∑

n

(
N 1̂4̃

n + N 2̂4̃
n + N 3̂1̃

n + N 4̂1̃
n

)(
ωF

n+ m1+m2
2

− ωF
m1+m2

2
+

κ

2

)

+
∑

n

(
N 1̂3̃

n + N 2̂3̃
n + N 3̂2̃

n + N 4̂2̃
n

)(
ωF

−n− m1−m2
2

− ωF

− m1−m2
2

+
κ

2

)
.

3.5. Summary

In this section, we explain how to compute the quantum fluctuations around any classical
superstring motion in AdS5 × S5. These excitations include the fermionic, AdS5 and S5

28 As for the simple example of the harmonic oscillators in the previous section, the sum of all constant shifts appearing
in (198) and (199) cancel so that only the shifts in the mode number lead to a change of the final result. The difference
with respect to the sum with no shifts can be obtained from (202) and is equal to m2/κ in both cases.
29 The fermionic frequencies for the general circular string of section 3.2 can be computed (we shall publish our
findings elsewhere). In particular, for the su(2) general circular string we find the results listed in table 3.
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modes. We showed that each mode corresponds to adding a pole to a specific pair of sheets
i, j of the algebraic curve. The position of the pole is determined from the equation

pi

(
xij

n

) − pj

(
xij

n

) = 2πn,

and thus provides one with an unambiguous labeling for the frequencies. In particular we
observe the nice feature that for n = 0 this equation prescribes the pole at infinity, that is, we
find the expected zero modes associated with global transformations under the isometries of
the target super-space.

Technically, we computed the change in quasi-momenta due to the addition of these
new poles and read, from the large x asymptotics, the global charge corresponding to the
AdS energy, that is, the frequencies. However, since we computed explicitly the perturbed
quasi-momenta we have obtained not only the energy shift but actually all conserved charges!

In the following sections, we will use this method to prove some general statements about
the quasi-classical spectrum around any classical string solution.

4. Matching finite size corrections and fluctuations

In section 2, we developed a method to compute the finite size corrections in the
thermodynamical limit. The conjectured BS equations depend on the ’t Hooft coupling
λ and should describe the spectrum of the AdS/CFT system (in the planar limit) for the
asymptotic states, i.e. for large angular momentum J = L/

√
λ � 1. The analogue of the

thermodynamical limit for the BS equations is Ka ∼ L ∼ √
λ → ∞ as we already mentioned

in section 1. The BS equations are constructed to reproduce the classical algebraical curve of
the ‘finite-gap’ method in the leading thermodynamical limit. The finite size 1/L corrections
are also 1/

√
λ corrections to the classical spectrum and thus should be related to the quasi-

classical quantization considered in section 3.
In this section, we will apply the method developed in section 2 to the BS equations

to extract their finite size corrections. Then, we will show that they are, in fact, related to
the fluctuations, considered in the previous section, in such a way, that the one-loop 1/

√
λ

correction to the classical energy of a state is given by a sum of zero point oscillations. This
proves the complete one-loop consistency of the BS equations.

4.1. Heisenberg spin chain

In this section, we will demonstrate the interplay between fluctuations and finite size
corrections in NBAs in the scaling limit. For simplicity, we first consider the su(1, 2) spin
chain and then generalize to the general su(N) case.

In section 2, we explained how to obtain the spectrum of the fluctuation energies around
any classical string solution using the algebraic curve by adding a pole to this curve. In
particular, we reproduced in this way some previous results [85–88] where the semi-classical
quantization around some simple circular string motions was computed by directly expanding
the Metsaev–Tseytlin action [9] around some classical solutions and quantizing the resulting
quadratic action. Using the fact that one extra pole in the algebraic curve means one quantum
fluctuation, we can compute the leading quantum corrections to the classical energy of a
state from the field theory considerations using the algebraic curve alone, as we mentioned in
section 1. This implies a nontrivial relation between the fluctuations on the algebraic curve
and finite size corrections in the Bethe ansatz.

• Suppose we compute the energy shift δE ij
n due to the addition of a stack with mode number

n uniting sheets pi and pj to a given configuration with some finite cuts C.
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• Suppose, on the other hand, that we compute 1/L energy expansion E = E (0) + 1
L
E (1) + · · ·

of the configuration with the finite cuts C.

From the field theory point of view, the first quantity corresponds to one of the fluctuation
energies around a classical solution parameterized by the configuration with cuts C whereas the
second quantity, E (1), is the one-loop shift [53] around this classical solution with energy E (0).
This one-loop shift, or ground-state energy, is given by the sum of halves of the fluctuation
energies [53]:

E (1) = 1

2

N∑
n=−N

∑
ij

δE ij
n . (204)

In fact for usual (non super-symmetric) field theories, this sum is divergent and needs to be
regularized. We will see that (204) can be generalized and holds for arbitrary local charges

Q(1)
r = 1

2

N∑
n=−N

∑
ij

δQij
r,n, (205)

where N is some large cutoff.
Let us once more stress that from the Bethe ansatz point of view, these quantities are

computed independently and there is a priori no obvious reason why such a relation between
fluctuations and finite size corrections should hold. In this section, we will show that nested
Bethe ansä tze describing (super) spin chains with an arbitrary rank do indeed obey such a
property with some particular regularization procedure (for the Heisenberg su(2) spin chain, a
similar treatment was carried in [57]). Moreover, we will see that the regularization mentioned
above also appears naturally from the Bethe ansatz point of view as some integrals around the
origin.

4.1.1. One-loop shift and fluctuations. We will follow the logic of the previous section to
compute the charges of the fluctuations, around a given configuration of the roots. Let us pick
the leading order integral equation for the densities of the Bethe roots in the scaling limit (150)
and perturb it by a single stack, connecting pi with pj . According to (144) this simply implies
ρ2 → ρ2 + 1

L
δ(x − xij ), where xij is position of the new stack. Finally, the positions where

one can put an extra stack, as it follows from the BAE (140), (141), can be parameterized by
one integer mode number n

pi

(
xij

n

) − pj

(
xij

n

) = 2πn. (206)

Therefore, for i = 2, j = 3 the perturbed equation (150) reads as
1

x
+ 2

∫
C23

− ρ(y)

x − y
+
∫
C13

ρ(y)

x − y
+

1

L

2

x − x23
n

= 2πk23 + φ2 − φ3, x ∈ C23, (207)

and this perturbation will lead to some perturbation of the density δρ(y), which will lead to
the perturbation in the local charges (142) as

δQ23
r,n =

∫
δρ(y)

yr
dy +

1

L
(
x23

n

)r , (208)

the local charges of the fluctuation with polarization 23 and mode number n.
Thus, by linearity, if we want to obtain the one-loop shift (205) (or rather a large N

regularized version of this quantity where the sum over n goes from −N to N) we have to
solve the following integral equation for densities:

1

x
+ 2

∫
C23

− ρ(y)

x − y
+
∫
C13

ρ(y)

x − y
+

N∑
n=−N

1

2L

[
2

x − x23
n

+
1

x − x13
n

]
= 2πk23, x ∈ C23, (209)

61



J. Phys. A: Math. Theor. 42 (2009) 254004 N Gromov

and then the one-loop shifted charges are given

Qr =
∫
C13∪C23

ρ(y)

yr
dy +

N∑
n=−N

1

2L

[
1(

x23
n

)r +
1(

x13
n

)r
]

(210)

=
∫
C13∪C23

ρ(y)

yr
dy +

N∑
n=−N

1

2L

[ ∮
x23

n

cot23

yr

dy

2π i
+

∮
x13

n

cot13

yr

dy

2π i

]
. (211)

To pass from the first line to the second in the above expression, we use that cotij has poles
at x

ij
n with unit residue. We will now understand how to redefine the density in such a way

that the second term is absorbed into the first one. We start by opening the contours in (211)
around the excitation points x

ij
n . These contours will then end up around the cuts Ckl of the

classical solution and around the origin. We will not consider the contour around x = 0—this
contribution would lead to a regularization of the divergent sum on rhs of (205). We will
analyze it carefully in the superstring case, where it leads to the Hernandez–Lopez phase
factor. Then we get

Qr =
∫
C13∪C23

ρ(y)

yr
dy +

1

2L

[ ∮
C13

cot23

yr

dy

2π i
+

∮
C23

cot13

yr

dy

2π i

]
. (212)

Noting that

cot+ij = cot−kj , x ∈ Cik, (213)

where the superscript + (−) indicates that x is slightly above (below) the cut, we can write

Qr =
∫
C13∪C23

ρ(y)

yr
dy − 1

2L

∫
C13∪C23

� cot12

yr

dy

2π i
(214)

so that we see that it is natural to introduce a new density, ‘dressed’ by the virtual particles

� = ρ − 1

2L

� cot12

2π i
(215)

so that the expression for the local charges takes the standard form

Qr =
∫
C13∪C23

�(y)

yr
dy.

Let us now rewrite our original integral equation (209) in terms of this dressed density. We will
see that the integral equation we construct for this density by requiring a proper semi-classical
quantization will be precisely equation (153) (up to some contribution coming from the region
around x = 0; subtraction of this contribution could be considered as a regularization of the
divergent sum (205) which is the finite-size-corrected integral equation arising from the NBA
for the spin chain! This will thus prove the announced property relating finite size corrections
and one-loop shift.

Consider for example the first summand in (209) (recall that x ∈ C23):∑
n

1

x − x23
n

=
∑

n

∮
x23

n

cot23

x − y

dy

2π i
= cot23 +

∮
C13

cot23

x − y

dy

2π i
= cot23 −

∫
C13

� cot12

x − y

dy

2π i
.

(216)

Note that cot23 has branch cut singularities at C13 which we have to encircle when we blow
up the contour, which leads to the second term. The first term comes from the pole at x = y.
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Figure 19. Illustration of an identity used in the main text.

Finally, to write the second term as it is we used (160). Analogously (see figure 19 for a
pictorial explanation of the second equality),∑

n

1

x − x13
n

=
∮
C23

cot13

x − y

dy

2π i
= cot/ 13 +

∫
C23

− � cot13

x − y

dy

2π i
= cot/ 13 −

∫
C23

− � cot12

x − y

dy

2π i
.

(217)

Then we note that (see (162))

cot/ 13 = cot/ 12 = −
∫
C13∪C23

− � cot12

x − y

dy

2π i

so that (209) reads as

1

x
+ 2

∫
C23

− ρ(y)

x − y
+
∫
C13

ρ(y)

x − y
+

1

2L

[
2 cot23 − 2

∫
C23

− � cot12

x − y

dy

2π i

− 3
∫
C13

� cot12

x − y

dy

2π i

]
= 2πk23 + φ2 − φ3,

which in terms of the redefined density � becomes

1

x
+ 2

∫
C23

− �(y)

x − y
+
∫
C13

�(y)

x − y
+

1

L

[
cot23 −

∫
C13

� cot12

x − y

dy

2π i

]
= 2πk23 + φ2 − φ3,

which coincides precisely with (153) as announced above! Thus the finite size corrections to
the charge of any given configuration will indeed be equal to the field theoretical prediction,
that is, to the one-loop shift around the classical solution.

4.1.2. Generalization. Here, we consider a su(n) NBA with the Dynkin labels Va being +1
for a particular a only. In this section, we generalize the results from section 4.1.1. For the
spin chain su(n) NBA, in the classical limit, we will have n quasi-momenta, each above or
below each of the n − 1 Dynkin nodes30. We label these quasi-momenta by pi (pj ) with i, i ′

(j, j ′) taking positive (negative) values for quasi-momenta above (below) the node for which
Va �= 0. Then let us mention how the equations in the previous section are generalized. We
consider a middle node cut C1,−1. Now the analogue of equation (209) is

− 1

x
+
∑

j

∫
C1,j

δρ(y)

x − y
+
∑

i

∫
Ci,−1

δρ(y)

x − y
+

N∑
n=−N

1

2L

⎡
⎣∑

i

1

x − x
i,−1
n

+
∑

j

1

x − x
1,j
n

⎤
⎦ = 0,

(218)

and the charges (210)–(212) and (214) become31

30 See figure 20 for an example of such a pattern for a supergroup which clearly resembles su(8).
31 As in the previous section, we ignore the regularization of the charges coming from the contribution of the contour
around the origin which would appear in the second line by opening the contours around the excitation points x

ij
n .
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Qr −
∫
C

ρ(y)

yr
dy = +

∑
n

∑
ij

1

2L

1(
x

ij
n

)r = +
1

2L

∑
ij

1

2J

∮
x

ij
n

cotij
yr

dy

2π i
(219)

= +
1

2L

∑
ii ′j

∮
Ci′j

cotij
yr

dy

2π i
+

1

2L

∑
ijj ′

∮
Cij ′

cotij
yr

dy

2π i
(220)

= − 1

2L

∑
ii ′j

∮
Ci′j

cotii ′

yr

dy

2π i
− 1

2L

∑
ijj ′

∮
Cij ′

cotjj ′

yr

dy

2π i
(221)

= − 1

2L

∫
C

∑
i<i ′ � cotii ′ +

∑
j<j ′ � cotjj ′

yr

dy

2π i
, (222)

so that the natural definition of the dressed density now becomes

� = ρ +
1

4Lπ i
�

⎛
⎝∑

i<i ′
cotii ′ +

∑
j<j ′

cotjj ′

⎞
⎠ . (223)

The next step is to rewrite the integral equation (218) in terms of this new density. We proceed
exactly as in (216), (217) now using

cot1,i = −
∑

j

(
I1i

1,j + I1i
i,j

)
, Ikl

ij ≡
∫
Cij

cotkl(y)

x − y

dy

2π i
,

which is the analogue of (162) for this su(n) setup, so that at the end we obtain the following
equation:

∑
j

∫
C1,j

δ�(y)

x − y
+
∑

i

∫
Ci,−1

δ�(y)

x − y
+

1

L

⎛
⎝cot1,−1 −

∑
ij

∫
Cij

� cot1,i + � cotj,−1

x − y

dy

2π i

⎞
⎠ = 0

(224)

for δ� = � − �0 where �0 obeys the leading order equation

− 1

x
+
∑

j

∫
C1,j

�0(y)

x − y
+
∑

i

∫
Ci,−1

�0(y)

x − y
= 2πk1,−1. (225)

This corrected equation is precisely the one we would obtain from finite size corrections
to the su(n) NBA equations. To find this equation from the Bethe ansatz point of view,
one can simply repeat either of the derivations in section 2.2.1, that is, the known transfer
matrices in various representations or the bosonic duality described in the previous sections.
In section 4.2, we consider the AdS/CFT Bethe ansatz equations which are based on a large
rank symmetry group, namely PSU(2, 2|4). There one can see an example of how this could
be done explicitly.

4.2. Matching of finite size corrections and fluctuations in AdS/CFT

4.2.1. Middle node anomaly. In this section, we will expand the BS equations in the scaling
limit for the roots belonging to a cut containing middle node roots x4 only. We do not assume
that all the other cuts are of the same type, rather they can be cuts of stacks of several sizes.
In section 2.2.5, we will generalize the results obtained in this section to an arbitrary cut,
assuming, as in the previous section, that the cuts are small enough and twists are not zero so
that stacks are stable. We will discus in section 18 what happens when one takes all twists to
zero.
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Figure 20. The several physical fluctuations in the string Bethe ansatz. The 16 elementary physical
excitations are the stacks (bound states) containing the middle node root. From the left to the right,
we have four S5 fluctuations, four AdS5 modes and eight fermionic excitations. The bosonic
(fermionic) stacks contain an even (odd) number of fermionic roots represented by a cross in the
psu(2, 2|4) Dynkin diagram in the left.

To leading order, the middle node equation (31) can simply be written as /p4 − /p5 = 2πn

while at one loop the first product on the rhs of (31) corrects this equation due to (62):

1

i
log

K4∏
j �=k

(
u4,k − u4,j + i

u4,k − u4,j − i

)
� 2 /F 4(x) + α(x)πρ ′(x) cot(πρ(x)), (226)

where F4(x) = ∑K4
j

1
u(x)−u4,j

, ρ(x) = dk
duk

. Expansion of the remaining terms in (31) will not
lead to the appearance of such anomaly-like terms since the roots of other types are separated
by ∼ 1 from x4,k . Thus, we simply have

2πn = /p4 − /p5 − ηα(x)πρ ′(x) cot(πρ(x)), x ∈ C45.

In the following sections, we will use dualities of the BS equations to get some extra information
about the cuts of stacks and generalize the above equation to any possible type of cut. To
achieve this, we shall recast this equation in terms of the middle node roots x4 only. Finally,
in this section we will use

cotij ≡ α(x)
p′

i − p′
j

2
cot

pi − pj

2
,

which is similar to (but should not be confused with) (152).

4.2.2. Dualities in the string Bethe ansatz. Obviously, the behavior of the Bethe roots will
be as described in section 2.2 for a simpler example of a su(1, 2) spin chain, that is, we will
have simple cuts made out of x4 roots only and also cuts of stacks with x2, x3 and x4 roots
for example. Consider such a cut of stacks. Clearly, to be able to write the middle node
equation (31) or (227) we need to compute the density mismatches ρ2 −ρ3 and ρ3 −ρ4 which
are one-loop contributions we must take into account if we want to write an integral equation
for the middle node equation in terms of the density ρ4 of momentum-carrying roots only. In
this section, we shall analyze the dualities present in the BS Bethe equations. By analyzing
them in the scaling limit, we will then be able to derive the desired density mismatches.

Fermionic duality in the scaling limit. In [21], it was shown that the BS equations obey a
very important fermionic duality. Since we chose to work with a subset of the possible Bethe
equations, that is, those with η1 = η2 = η present in [21], we should apply the duality present
below not only to the fermionic roots x1 and x3 (as described below) but also to the Bethe

65



J. Phys. A: Math. Theor. 42 (2009) 254004 N Gromov

roots x5 and x7. Obviously, the duality for x5 and x7 is exactly the same as for x1 and x3 and
so we will focus simply on the latter while keeping implicit that we always dualize all the
fermionic roots at the same time.

We construct the polynomial (τ = η (φ4 − φ3))

P (x) = e+i τ
2

K4∏
j=1

(
x − x+

4,j

) K2∏
j=1

(
x − x−

2,j

)(
x − 1

/
x−

2,j

)

− e−i τ
2

K4∏
j=1

(
x − x−

4,j

) K2∏
j=1

(
x − x+

2,j

)(
x − 1

/
x+

2,j

)
(227)

of degree K4 + 2K2 which clearly admits x = x3,j and x = 1/x1,j as K3 + K1 zeros32. The
remaining K4 + 2K2 −K3 −K1 roots are denoted by x̃3,j or 1/x̃1,j depending on whether they
are outside or inside the unit circle respectively,

P(x) = 2i sin(τ/2)

K1∏
j=1

(x − 1/x1,j )

K̃1∏
j=1

(x − 1/x̃1,j )

K3∏
j=1

(x − x3,j )

K̃3∏
j=1

(x − x̃3,j ). (228)

Then we can replace the roots x1,j , x3,j by the roots x̃1,j , x̃3,j in the BS equations provided
we change the grading η → −η and interchange the twists φ1 ↔ φ2 and φ3 ↔ φ4. In fact,
since we should also dualize the remaining fermionic roots, we should also change φ5 ↔ φ6

and φ7 ↔ φ8 and replace the remaining fermionic roots x5 and x7.
Since to the leading order x± � x, each root will belong to a stack which must

always contain a momentum-carrying root x4. Therefore, we have K̃1 = K2 − K1 and
K̃3 = K2 + K4 − K3. Thus, we label the Bethe roots as

x1,j = x4,j − ε1,j , j = 1, . . . , K1

x̃1,j = x4,j+K1 − ε̃1,j , j = 1, . . . , K̃1

x2,j = x4,j − ε2,j , j = 1, . . . , K2

x3,j = x4,j − ε3,j , j = 1, . . . , K3

x̃3,j = x4,j+K3 − ε̃3,j , j = 1, . . . , K̃3,

with ε ∼ 1/
√

λ. Dividing (227) and (228) by
∏K4

j=1(x − x4,j )
∏K2

j=1(x − x4,j )(x − 1/x4,j ),
we have

e+i τ
2

K4∏
j=1

x − x+
4,j

x − x4,j

K2∏
j=1

x − x−
2,j

x − x4,j

x − 1/x−
2,j

x − 1/x4,j

− e−i τ
2

K4∏
j=1

x − x+
4,j

x − x4,j

K2∏
j=1

x − x+
2,j

x − x4,j

x − 1/x+
2,j

x − 1/x4,j

= 2i sin(τ/2)

K1∏
j=1

x − 1/x1,j

x − 1/x4,j

K̃1∏
j=1

x − 1/x̃1,j

x − 1/x4,K1+j

K3∏
j=1

x − x3,j

x − x4,j

K̃3∏
j=1

x − x̃3,j

x − x4,K3+j

.

(229)

In this form, it is easy to expand the duality relation in powers of 1/
√

λ. By expanding all
factors in (229) such as

K2∏
j=1

x − x±
2,j

x − x4,j

= exp

⎛
⎝ K2∑

j=1

log
x − x±

2,j

x − x4,j

⎞
⎠ � exp

⎛
⎝∓ i

2
G2(x) +

K2∑
j

ε2,j

x − x2,j

⎞
⎠ ,

32 We also have 1/x1 zeros because, due to (32), the equation for x1,j is the same as the equation for x3,j if we replace
x3,j by 1/x1,j . This is why the restriction (32) of the twists is so important.
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we find

sin

(
η(p4 − p3)

2

)
= sin

(τ

2

)
exp

(
+
∑ ε3

x − x3
+
∑ ε̃3

x − x3
−

∑ ε2

x − x2

)

× exp

(
−

∑ ε1
/
x2

1

x − 1/x1
−

∑ ε̃1
/
x̃2

1

x − 1/x̃1
+
∑ ε2

/
x2

2

x − 1/x2

)
.

Then, similar to what we had in section 2.2.3 for the bosonic duality, we note that

α(x)∂x

(∑ ε3

x − x3
+
∑ ε̃3

x − x̃3
−

∑ ε2

x − x̃2

)
= H3 + H3̃ − H4 − H2,

with a similar expression for the argument of the second exponential. Thus, finally, we get

(H4 + H2 − H3 − H3̃) + (H̄ 2 − H̄ 1 − H̄ 1̃) = −cot34

or, alternatively, using the x → 1/x symmetry transformation properties of the quasi-
momenta,

(H̄ 4 + H̄ 2 − H̄ 3 − H̄ 3̃) + (H2 − H1 − H1̃) = −cot12 .

From these expressions, we can deduce several properties of the density mismatches we wanted
to obtain. For example, if we compute the discontinuity of (4.2.2) at a cut containing roots x1,
that is, in a large cut of stacks C1,i>4, we immediately get

ρ1 − ρ2 = −� cot12

2π i
, x ∈ C1,i>4. (230)

Proceeding in a similar way, we find

ρ3 − ρ4 = −� cot34

2π i
, x ∈ C3,i>4, (231)

ρ3 − ρ4 = ρ2 − ρ3̃, x ∈ C1,i>4 ∪ C2,i>4. (232)

Let us now show that in the scaling limit, the fermionic duality corresponds just to the
exchange of the sheets {pi} of the Riemann surface. For illustration, let us pick p1 and see
how it transforms under the duality. By definition the fermionic duality corresponds to the
replacement η → −η,H1 → H1̃,H3 → H3̃ and φ1 ↔ φ2, φ3 ↔ φ4, so that

p1 → 2πJ x − δη,−1Q1 + δη,+1Q2x

x2 − 1
− η(−H1̃ − H̄ 3̃ + H̄ 4) + φ2 = p2 + η cot12

In the same way we get

p2 → p1 + η cot12, p3 → p4 − η cot34, p4 → p3 − η cot34,

and since cotij ∼ 1/
√

λ we see that to the leading order the duality indeed just exchanges the
sheets.

Bosonic duality in the scaling limit. The bosonic nodes of the BS equations are precisely
as in the usual Bethe ansatz discussed in the first sections, so we can just briefly mention the
results. The duality (τ = η(φ2 − φ3))

e+i τ
2 Q̃2(u − i/2)Q2(u + i/2) − e−i τ

2 Q̃2(u + i/2)Q2(u − i/2) = 2i sin
τ

2
Q1(u)Q3(u)

leads to

(H1 + H3 − H2 − H2̃) + (H̄ 1 + H̄ 3 − H̄ 2 − H̄ 2̃) = cot23, (233)
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(a) (b) (c) (d )

Figure 21. Action of the duality on a long stack. By successively applying the fermionic and the
bosonic dualities, we can reduce the size of any large cut. One should not forget to change the sign
of the grading η after applying the fermionic duality.

which implies

ρ2 − ρ3 = +
� cot23

2π i
, x ∈ C2,i>4.

As we already discussed in section 2.2, the bosonic duality also amounts to an exchange
of Riemann sheets. Indeed, under the replacement H2 → H2̃ and φ2 ↔ φ3, we find

p2 → p3 − η cot23, p3 → p2 + η cot23,

which again, to the leading order in
√

λ, is just the exchange of the sheets of the curve.

Dualities and the missing mismatches. Using bosonic and fermionic dualities separately, we
already got some information about the several possible mismatches of the densities inside
the stack. To compute the missing mismatches, we have to use both dualities together. For
example, suppose we want to compute ρ3 − ρ4 in a cut C1,i>4. We start by one such large cut
of stacks (see figure 21(a)) and we apply the fermionic duality to this configuration so that we
obtain a smaller cut as depicted in figure 21(b). For this configuration, we can use (4.2.2) to
get

ρ2 − ρ3̃ = +
� cot14

2π i
.

However, from (232), this is also equal to the mismatch we wanted to compute, that is,

ρ3 − ρ4 = +
� cot14

2π i
, x ∈ C1,i>4.

To compute the last mismatch, we apply the bosonic duality to get a yet smaller cut as in
figure 21(c) for which we use (231) to get

ρ3̃ − ρ4 = −� cot13

2π i
.

Again, from (232), we can revert this result into a mismatch for the configuration before
duality, that is,

ρ2 − ρ3 = −� cot13

2π i
, x ∈ C1,i>4.

Let us then summarize all density mismatches in table 4.
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Table 4. Density mismatches.

C1,i C2,i C3,i

2π i(ρ1 − ρ2) −� cot12

2π i(ρ2 − ρ3) −� cot13 +� cot23

2π i(ρ3 − ρ4) +� cot14 −� cot24 −� cot34

4.2.3. Integral equation. In this section, we shall recast equation (227) or

η
4πJ x − 2δη,+1Q1 − 2δη,−1Q2x

x2 − 1
+ 2 /H 4 − H3 − H5 − H̄ 1 − H̄ 7

= 2πn + ηφ4 − ηφ5 − cot45 (234)

in terms of the density ρ4(x) of the middle roots x4. To do so, we only need to replace
the several densities by the middle node density ρ4(x) using the several density mismatches
presented in table 4. Defining

Hij (x) ≡
∫
Cij

α(x)

α(y)

ρ4(y)

x − y
dy,

we can then rewrite equation (234) in terms of the middle node roots only:

η
4πJ x − 2δη,+1Q1 − 2δη,−1Q2x

x2 − 1
+ 2 /H 45 + H15 + H48 − 2H̄ 18 − H̄ 15 − H̄ 48

= 2πn + ηφ4 − ηφ5 − cot45 +
∑

1�i�4
5�j�8

(
I i4

ij + I5j

ij

)
+

∑
1�i�4
5�j�8

(
Ī i1

1j + Ī8j

i8

)
, (235)

where x ∈ C45 and

Ikl
ij (x) = (−1)Fkl

∫
Cij

α(x)

α(y)

� cotkl

x − y

dy

2π i
, Ikk

ij (x) ≡ 0, Īkl
ij (x) = Ikl

ij (1/x).

The several dualities amount to an exchange of Riemann sheets so that the cuts Cij → Ci ′j ′

with the subscripts in Hij changing accordingly. The middle roots x4 are never touched in
the process. Moreover, to leading order, pi ↔ pi ′ and thus the rhs of (235) is also trivially
changed under the dualities. Therefore, as in section 2.2.1 (see (153) and (154)), we can now
trivially write the corrected equation when x belongs to any possible type of cut of stacks by
applying the several dualities to equation (235).

4.2.4. Fluctuations. In this section, we shall find the integral equation (235) from the field
theoretical point of view like we did in section 4.1.1. That is, we will find what the corrections
to the classical (leading order) equations [14]

η
4πJ x − 2δη,+1Q1 − 2δη,−1Q2x

x2 − 1
+ 2 /H 4 − H3 − H5 − H̄ 1 − H̄ 7 = 2πn + ηφ4 − ηφ5,

(236)

should be in order to describe properly the semi-classical quantization of the string (and not
only the classical limit). We will find that this construction leads precisely to the integral
equation (235), thus showing that the BS nested Bethe ansatz equations do reproduce the
one-loop shift around any (stable) classical solution with exponential precision (in some large
charge of the classical solution). This section is very similar to section 4.1.1 and thus we
will often omit lengthy but straightforward intermediate steps. We assume i = 1, . . . , 4 and
j = 5, . . . , 8 in all sums.
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As in (209) and (218), we add 1
2 (−1)F of a virtual excitation for each possible mode

number n and polarization ij to each quasi-momenta. Note that for this super-symmetric
model, the fluctuations can also be fermionic and indeed the grading (−1)F equals +1 (−1)

for bosonic (fermionic) fluctuations (see figure 20) as usual for bosonic (fermi-onic) harmonic
oscillators.

We denote ρ = ρ0+δρ where ρ0 is the leading density, the solution of the leading (classical)
equation (236), while ρ obeys the corrected (semi-classical) equation. For example, if we
consider x ∈ C4,5, the starting point should be (see [93] for a similar analysis)

0 = −2xδη,−1δQ1

x2 − 1
+ 2

∫
C45

α(x)

α(y)

δρ(y)

x − y
+
∫
C15

α(x)

α(y)

δρ(y)

x − y
+
∫
C48

α(x)

α(y)

δρ(y)

x − y

− 2
∫
C18

α(1/x)

α(y)

δρ(y)

1/x − y
−

∫
C15

α(1/x)

α(y)

δρ(y)

1/x − y
−

∫
C48

α(1/x)

α(y)

δρ(y)

1/x − y
+

N∑
n=−N

1

2

×
⎡
⎣∑

i�4

(−1)Fi5α(x)

x − xi5
n

+
∑
j�5

(−1)F4j α(x)

x − x
4j
n

−
∑
i�4

(−1)Fi8α(1/x)

1/x − xi8
n

−
∑
j�5

(−1)F1j α(1/x)

1/x − x
1j
n

⎤
⎦ .

(237)

Then, by construction, the charges

Qr =
∫
C

ρ(y)

yr
dy +

∑
n

∑
ij

(−1)Fij
α
(
x

ij
n

)
2
(
x

ij
n

)r =
∫
C

ρ(y)

yr
dy +

∑
ij

(−1)Fij

2

∮
x

ij
n

cotij
yr

dy

2π i
(238)

will take the 1/
√

λ-corrected values. It is clear that, as before, we do not include the new
virtual excitations in the density ρ(x). Similar to (215) and (223), if we want the charges to
have the standard form

Qr =
∫

�(y)

yr
dy,

we must redefine the density as

� = ρ +
1

4π i

⎛
⎝ ∑

i<i ′�4

(−1)Fii′ � cotii ′ +
∑

j>j ′�5

(−1)Fjj ′ � cotjj ′

⎞
⎠ .

Now we want to go back to the integral equation (237) and rewrite it using the density
δ� = � − ρ0. For example, for x ∈ C45,

2
∫
C45

α(x)

α(y)

δρ(y)

x − y
+
∫
C15

α(x)

α(y)

δρ(y)

x − y
+
∫
C48

α(x)

α(y)

δρ(y)

x − y

+
N∑

n=−N

1

2

[∑
i

(−1)Fi5α(x)

x − xi5
n

+
∑

j

(−1)F4j α(x)

x − x
4j
n

]

= 2
∫
C45

α(x)

α(y)

δ�(y)

x − y
+
∫
C15

α(x)

α(y)

δ�(y)

x − y
+
∫
C48

α(x)

α(y)

δ�(y)

x − y

+ cot45 −
∑
ij

(
I4i

ij + Ij5
ij

) − 1

2

∑
ij

(
Ī8i

8j + Ī1j

1i + Ī8i
ij + Ī1j

ij

)
,

where the identity

(−1)F4i cot4,i = −
∑

j

(
I4i

4j + I4i
ij

) −
∑

j

(
Ī1ī

1j + Ī1ī
īj

)
,
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where ¯̄i = i, 1̄ = 4, 2̄ = 3 are being used. Now, when x ∈ C18, we will get

2
∫
C18

α(x)

α(y)

δρ(y)

x − y
+
∫
C15

α(x)

α(y)

δρ(y)

x − y
+
∫
C48

α(x)

α(y)

δρ(y)

x − y

+
N∑

n=−N

1

2

[∑
i

(−1)Fi8α(x)

x − xi8
n

+
∑

j

(−1)F1j α(x)

x − x
1j
n

]

= 2
∫
C18

α(x)

α(y)

δ�(y)

x − y
+
∫
C15

α(x)

α(y)

δ�(y)

x − y
+
∫
C48

α(x)

α(y)

δ�(y)

x − y

− 1

2

∑
ij

(
I1i

ij + Ij8
ij − I8i

8j − I1j

1i

)
.

Finally we can use the x to 1/x symmetry to translate the last equality into one for x ∈ C45.
Subtracting it from the previous equation, we see that the 1/

√
λ-corrected equation will

correspond to adding

−cot45 +
∑
ij

(
I4i

ij + I5i
ij + Ī1i

1j + Ī8j

8i

)
to the rhs of (236) thus obtaining, after the identification � = ρ4, precisely the finite-size-
corrected equation (235) obtained from the NBA point of view!

In this section, we showed that the one-loop shift as a sum of all fluctuation energies
(or other local charges) perfectly matches the finite size corrections in the NBA equations.
However we systematically dropped the contours around the unit circle. In the following
section, we will accurately take it into account.

4.3. The unit circle and the Hernandez–Lopez phase

Consider again the sum in equation (237). We can rewrite it as an integral around each x
ij
n and

then blow the contour to encircle all the singularities of cotij and the circle going through the
points x

ij

N and x
ij

−N , which are close to 1 and −1 correspondingly. In the previous section, we
have already considered the contributions coming from the contours encircling the cuts of cotij
and showed that they reproduce the finite size corrections in the BS equations. Let us show
that the unit circle contributions account for the HL phase factor. We will drop systematically
the contributions considered in the previous section:

N∑
n=−N

1

2

⎡
⎣∑

i�4

(−1)Fi5α(x)

x − xi5
n

+
∑
j�5

(−1)F4j α(x)

x − x
4j
n

−
∑
i�4

(−1)Fi8α(1/x)

1/x − xi8
n

−
∑
j�5

(−1)F1j α(1/x)

1/x − x
1j
n

⎤
⎦

= 1

2

⎡
⎣∑

i�4

∮
α(x)

α(y)

(−1)Fi5 coti5
x − y

dy

2π i
+ · · ·

⎤
⎦ . (239)

Now let us assume that we can replace cot
(pi(x)−pj (x)

2

)
by i sign(Im x) everywhere with

exponential precision in L√
λ

� 1. This is reasonable for generic points in the unit circle, where
the imaginary part of pi(x)−pj (x) is large, but one has to carefully analyze the neighborhood
of the real axis, where this imaginary part vanishes. We will analyze this step carefully in the
following section. Assuming that this could be done, we will get

1

2

⎡
⎣∑

i�4

∮
α(x)

(−1)Fi5(p′
i − p′

5)

x − y
sign(Im y)

dy

2π
+ · · ·

⎤
⎦
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=
∮ [

α(x)

x − y
− α(1/x)

1/x − y

]
(p′

4 − p′
3 − p′

2 + p′
1) sign(Im y)

dy

2π
= −2ηV(x). (240)

Finally, as we can see from (46), the combination of quasi-momenta appearing in (240) is
precisely the one from which one reads the local charges Qn,

p′
4 − p′

3 − p′
2 + p′

1 = −η∂y [G4(y) − G4(1/y)] , (241)

where

G4(y) = −
∞∑

n=0

Qn+1y
n, (242)

so that we can expand the denominators in (240) for large x and obtain

V(x) = α(x)

∞∑
r, s = 2

r + s ∈ Odd

1

π

(r − 1)(s − 1)

(s − r)(r + s − 2)

(
Qr

xs
− Qs

xr

)
, (243)

where we recognize precisely the Hernandez–Lopez coefficients! To obtain the values of the
potential for |x| < 1, we can simply use the exact symmetry V(x) = −V(1/x) which is not
manifest in form (243).

Unit circle contribution. In this section, we show that for the ‘unit circle’ contribution we can
replace cotij by i sign Im (x) if the ratio L/

√
λ is large.

Let us focus on the vicinity of x = 1 where we have the following expansion of the
quasi-momenta:

pi(x) − pj (x)

2
= βij

x − 1
+ · · · ,

where βij is usually of order L/
√

λ. We will consider the circle with radius x
ij

N+1/2 � 1+ 1
πNβij

,
where N is some large cutoff in the sum of fluctuations (237). We want to estimate∫

α(x)f (x)

[
cot

(
pi − pj

2

)
+ i sign(Im x)

]
(p′

i − p′
j ) dx.

This integral is dominated for x � ±1 and can be performed by the saddle point. The
contribution for x � 1 is∫

α(x)f (x)

[
cot

(
pi − pj

2

)
+ i sign(Im x)

]
(p′

i − p′
j ) dx = iπ3f (1)

6βij

√
λ

+ O
(

1

N

)
,

which is zero under the sum over all polarizations. For example,

(−1)F45

β45
= − (−1)F35

β35
.

Thus, we can indeed can replace cot’s when integrating over the unit circle by a simple sign
function. In the appendix G, we will carefully analyze the N → ∞ limit and the numbering
of the frequencies problem.

Summary. Although we always assumed the twists to be sufficiently large and the fillings
to be sufficiently small, we can always analytically continue the results toward zero twists
or large filling fractions. Let us briefly explain why. In the scaling limit, for large twists,
the bosonic duality we introduced amounts to a simple exchange of sheets in some Riemann
surface, pa(x) ↔ pb(x). As we saw in section 2.2.5, what happens when the twists start to
become very small is that the quasi-momenta are still simply exchanged but in a piecewise
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manner, that is, we can always split the complex planes in some finite number of regions
where the bosonic duality simply means pa(x) ↔ pb(x). Thus, from the eip algebraic curve
point of view nothing special occurs for what analyticity is concerned and therefore we can
safely analytically continue our findings to any value of the twists. Exactly the same analysis
holds for the filling fractions. Moreover, for the usual Bethe system, we defined a set of
quasi-momenta, which constitute an algebraic curve to any order in 1/L, and therefore we do
not expect analyticity to break down at any order in 1/L.

We also preformed a high precision numerical check concluding that there is no singularity
when the configuration of the Bethe roots is affected by this partial reshuffling of the sheets
and that finite size corrections are still related to the same sum of fluctuations, which are
analytical functions w.r.t. the twists.

5. Relativistic bootstrap approach in AdS/CFT

The classical integrable two-dimensional nonlinear sigma models are relatively easy to solve.
At least, when the corresponding Lax pair is known, one can construct a large class of the
so-called classical finite gap solutions [94]. These solutions are known to constitute a dense
(in the sense of parameters of initial conditions) subset in the space of solutions of the model.

However, the quantization of such classically integrable sigma models usually creates
substantial problems and is known to be virtually impossible to do in the direct way, in terms
of the original degrees of freedom of the classical action. The existing quantum solutions are
usually based on plausible assumptions which are difficult to prove in a systematic way.

There were a few successful, though not completely justified, attempts to find the quantum
solutions of the SU(N) principal chiral field model (PCF), starting from the original action.
Zamolodchikov and Zamolodchikov [95] found the factorizable bootstrap S-matrices for the
O(N) sigma models, later generalized to many other sigma models. The O(4) case on which
we focused in this section is equivalent to the SU(2) PCF. Polyakov and Wiegmann [96] and
Wiegmann [97] found the equivalent non-relativistic integrable Thirring model reducible in
a special limit to the PCF. Faddeev and Reshetikhin [98] proposed the ‘equivalent’ double
spin chain for the SU(2) PCF. In both cases, the equivalence is based on subtle assumptions,
difficult to verify.

The verification of such solutions is usually based on the perturbation theory, large N limit
or Monte Carlo simulations [95, 99–101].

Here, we address this question in a more systematic way. Namely, we will reproduce all
classical finite gap solutions of a sigma model from the Bethe ansatz solution for a system of
physical particles on the space circle, in a special large density and large energy limit. We
shall call it the continuous limit though, as we show, it is the actual classical limit of the theory.
We will see that in this limit, the BAEs diagonalizing the periodicity condition will be reduced
to a Riemann–Hilbert problem. This section is inspired by Mann and Polchinski [102] and
contains many original results.

In [90], we also repeated this construction for the O(6) sigma model and explained how
the generalization to the O(2n) model can be done in a trivial way. In fact, as will be clear
below, the method seems to be general enough to work for all sigma models described by a
factorizable bootstrap S-matrix. Hence it gives a new way to relate, in a general and systematic
way, the classical and quantum integrability.

The classical action of the SU(2) PCF is

S =
√

λ

8π

∫
dσ dτ tr ∂ag

†∂ag, g ∈ SU(2). (244)
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It is equivalent to the O(4) sigma model where the fundamental field is the four-dimensional
unit vector �X(σ, τ). Therefore, at least classically, it can be used to study a string on the S3×R1

background. Indeed, our main motivation for this study was the search for new approaches in
the quantization of the Green–Schwarts–Metsaev–Tseytlin superstring on AdS5 × S5 which
is classically (and most likely quantum-mechanically as well) an integrable field theory as we
discussed in section 1. The simplest nontrivial sub-sector of it is described by the sigma model
on the subspace S3 × Rt , where Rt is the coordinate corresponding to the AdS time. The
time direction will be almost completely decoupled from the dynamics of the rest of the string
coordinates, appearing only through the Virasoro conditions. These conditions are a selection
rule for the states of the theory or, better to say, for the classical solutions appearing when we
pick the classical limit in Bethe equations. The degrees of freedom eliminated in this way are
the longitudinal modes associated with the reparameterization invariance of the string.

Of course, in the absence of the fermions and of the AdS part of the full 10D superstring
theory, this model will be asymptotically free and will not be suitable to describe the quantum
string theory. Nevertheless, in the classical limit we shall encounter the full finite gap solution
of the string in the SO(4) sector found in [18]. The method can be generalized to the SO(6)

sector in [15] and hopefully to the full Green–Schwarts–Metsaev–Tseytlin superstring on the
AdS5 × S5 space, including fermions, where the finite gap solution was constructed in [15]
(although it appears to be more difficult for the last, and the most interesting, system).

At the end of this paper, we go slightly further and derive from these BAEs the conjectured
asymptotic string Bethe ansatz (the so-called AFS equation [20]) with its nontrivial dressing
factor to the leading order in large λ. According to the quasi-classical analysis in the previous
sections, it captures the information about the quantum spectrum up to the 1/

√
λ order for

large L/
√

λ.

5.1. Classical SU(2) principal chiral field

In this section, we will review the classical finite gap solution of the SU(2) principal chiral
field. This construction can be obtained by the reduction of the full PSU(2, 2|4) algebraic
curve constructed in the introduction to the SU(2) sub-sector. This can be achieved by
dropping all quasi-momenta except p̃2 and p̃3. But for self-consistency of this section and to
fix some notations, we will go through the construction of [18]33 for the easy comparison with
the quantum Bethe ansatz solution of the model.

Classically, this model can be used to describe the string on S3 × Rt ⊂ AdS5 × S5. At
the quantum level, even dropping all the rest of the degrees of freedom, one might still expect
to capture some features of the full superstring theory. As we will see in the later sections,
this is indeed the case.

The action (244) possesses the obvious global symmetry under the right and left
multiplication by the SU(2) group element. The currents associated with this symmetry
are, respectively,

jR ≡ j = g−1dg, jL = dgg−1, (245)

and the corresponding Noether charges read as

QR = i
√

λ

4π

∫ 2π

0
dσ tr

(
jR
τ τ 3

)
, QL = i

√
λ

4π

∫ 2π

0
dσ tr

(
jL
τ τ 3

)
. (246)

In the quantum theory, these charges are positive integers34.

33 With a little generalization to the excitations of both left and right sectors.
34 For future comparisons, tt will be important to note that the normalization of the generators is such that the smallest
possible charge is 1 as follows from the Poisson brackets for the current.
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Virasoro conditions read as tr (jτ ± jσ )2 = −2κ2
±, where we used the residual

reparameterization symmetry to fix the AdS global time Y to

Y = κ+

2
(τ + σ) +

κ−
2

(τ − σ). (247)

Finally, from the action, we read off the energy and momentum as

Ecl ± P cl = −
√

λ

8π

∫ 2π

0
tr (jτ ± jσ )2 dσ =

√
λ

2
κ2

±. (248)

5.1.1. Classical integrability and finite gap solution. The equations of motion can be encoded
into a single flatness condition for a Lax connection over the worldsheet [94]:[

∂σ − xjτ + jσ

x2 − 1
, ∂τ − xjσ + jτ

x2 − 1

]
= 0. (249)

In particular, we can then use this flat connection to define the monodromy matrix

�(x) =←
P exp

∫ 2π

0
dσ

xjτ + jσ

x2 − 1
. (250)

By construction, �(x) is a unimodular matrix (and also unitary for real x) whose eigenvalues
can therefore be written as

(eip̃(x), e−ip̃(x)), (251)

where p̃(x) is called the quasi-momentum. These functions of x do not depend on time τ due
to (249) and therefore provide an infinite set of classical integrals of motion of the model.

From the explicit expression (250), we can determine the behavior of the quasi-momentum
close to x = ±1, 0,∞. Using (248) and (246), we obtain

p̃(x) � − πκ±
x ∓ 1

, (252)

p̃(x) � 2πm +
2πQL√

λ
x, (253)

p̃(x) � −2πQR√
λ

1

x
. (254)

Since, by construction, �(x) is analytical in the whole plane except at x = ±1 where it
develops essential singularities, it follows from (255) that for x �= ±1 the only singularities of

p̃′(x) = − 1√
4 − (tr �(x))2

d

dx
tr �(x) (255)

are of the form

p̃′(x → xk) � 1√
x − xk

. (256)

If we look for a finite gap solution, the number K of these cuts is finite and we conclude
that p̃′(x) and −p̃′(x) are two branches of an analytical function defined by a hyperelliptic
curve (see figure 1):

(p′)2 = P 2(x)

Q(x)
, (257)
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Figure 22. Algebraic curve from the finite gap method. u and v cuts correspond to cuts inside and
outside the unit circle respectively.

where Q(x) has 2K zeros and the order of P(x) is fixed by the large x asymptotics (254). We
denote the branch cuts of p′(x) by u (v) cuts if they are inside (outside) the unit circle. These
cuts are the loci where the eigenvalues of the monodromy matrix become degenerate. Thus,
when crossing such a cut the quasi-momentum may at most jump by a multiple of 2π which
characterizes each cut:

p̃/(x) = πnk, x ∈ Ck, (258)

where p̃/(x) is the average of the quasi-momentum above and below the cut:

p̃/(x) ≡ 1
2 (p̃(x + i0) + p̃(x − i0)). (259)

Each cut is also parameterized by the filling fraction numbers which we define as integrals
along A cycles of the curve (see figure 1)35:

Sv
i = −

√
λ

8π2i

∮
Av

i

p̃(x)

(
1 − 1

x2

)
dx, Su

i =
√

λ

8π2i

∮
Au

i

p̃(x)

(
1 − 1

x2

)
dx. (260)

Finally, imposing (252)–(254), (258), (260), one fixes completely the undetermined constants
in (257).

5.2. Quantum Bethe ansatz and classical limit: O(4) sigma model

We will describe a quantum state of the O(4) sigma model by a system of L relativistic
particles of mass μ/2π put on a circle of length 2π . The momentum and the energy of each
particle can be suitably parameterized by its rapidity as p = μ

2π
sinh θ and e = μ

2π
cosh θ ,

respectively, so that the total energy and momentum will be given by

P = μ

2π

L∑
α=1

sinh(πθα), (261)

E = μ

2π

L∑
α=1

cosh(πθα). (262)

These particles transform in the vector representation under the O(4) symmetry group or in
the bi-fundamental representations of SU(2)R × SU(2)L. The scattering of the particles in

35 It was pointed out in [15, 19] and shown in [16] that S
u,v
i are the action variables so that quasi-classically, they

indeed become integers. We will also find a striking evidence of this quantization on the string side when finding the
classics from the quantum Bethe ansatz where these quantities are naturally quantized. Indeed, from the AdS/CFT
correspondence these filling fractions are expected to be integers since this is obvious on the SYM side [18, 19]. We
used their integrability to quasi-classically quantize the AdS/CFT string in section 3.
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this theory is known to be elastic and factorizable; the relativistic S-matrix Ŝ(θ1 − θ2) depends
only on the difference of rapidities of scattering particles θ1 and θ2 and obeys the Yang–Baxter
equations. As was shown in [95] (and in [97, 99, 103, 104] for the general principle chiral
field) these properties, together with the unitarity and crossing invariance, define essentially
unambiguously the S-matrix Ŝ. Let us briefly recall how the bootstrap program goes. From
the symmetry of the problem, we know that

Ŝ = ŜL × ŜR, (263)

where SL,R are built by using the two SU(2)-invariant tensors and can therefore be written as

ŜR,L(θ)a
′b′

ab = S0(θ)

θ − i

(
θδa′

a δb′
b − if (θ)δb′

a δa′
b

)
.

Imposing the Yang–Baxter equation on Ŝ yields f (θ) = 1, while the unitarity constrains the
remaining unknown function to obey

S0(θ)S0(−θ) = 1 (264)

and the crossing symmetry requires

S0(θ) =
(

1 − i

θ

)
S0(i − θ). (265)

From (264) and (265) and the absence of poles on the physical strip 0 < θ < 2, one can

compute the scalar factor: S0(θ) = �(− θ
2i )�( 1

2 + θ
2i )

�( θ
2i )�( 1

2 − θ
2i )

. For our purpose, we just need the much

easier to extract large θ asymptotics. From (265) and (264), it immediately follows that

i log S2
0(θ) = 1/θ + O(1/θ3). (266)

5.2.1. Bethe equations for particles on a circle. When this system of particles is put into a
finite one-dimensional periodic box of length L, the set of rapidities of the particles {θα} is
constrained by the condition of periodicity of the wavefunction |ψ〉 of the system,

|ψ〉 = eiμ sinh πθα

←−
α−1∏

1

Ŝ(θα − θβ)

−→
α+1∏
N

Ŝ(θα − θβ)|ψ〉, (267)

where the first term is due to the free phase of the particle and the second is the product
of the scattering phases with the other particles. The arrows stand for the ordering of the
terms in the product and μ = m0L is a dimensionless parameter. Diagonalization of both
the L and R factors in the process of fixing the periodicity (267) leads to the following set of
Bethe equations [105] which may be found from (267) by the algebraic Bethe ansatz method
[69, 106]. We took the logarithms of the Bethe ansatz equations in their standard, product
form. This leads to the integers mα, nu

j , n
v
j defining the choice of the branch of logarithms:

2πmα = μ sinh πθα −
L∑

β �=α

i log S2
0(θα − θβ)

−
Ju∑
j

i log
θα − uj + i/2

θα − uj − i/2
−

Jv∑
k

i log
θα − vk + i/2

θα − vk − i/2
, (268)

2πnu
j =

L∑
β

i log
uj − θβ − i/2

uj − θβ + i/2
+

Ju∑
i �=j

i log
uj − ui + i

uj − ui − i
, (269)
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2πnv
j =

L∑
β

i log
vk − θβ − i/2

vk − θβ + i/2
+

Jv∑
l �=k

i log
vk − vl + i

vk − vl − i
, (270)

where u’s and v’s are the Bethe roots appearing from the diagonalization of (267) and
characterizing each quantum state. A quantum state with no such roots corresponds to the
highest weight ferromagnetic state where all spins of both kinds are up. Adding u (v) roots
corresponds to flipping one of the right (left) SU(2) spins, thus creating a magnon. The left
and right charges of the wavefunction, associated with the two SU(2) spins, are given by

QL = L − 2Ju, QR = L − 2Jv. (271)

This model with massive relativistic particles and the asymptotically free UV behavior
cannot look like a consistent quantum string theory. Only in the classical limit can we view
it as a string toy model obeying the classical conformal symmetry. In the classical case, it is
also easy to impose the Virasoro conditions. In the quasi-classical limit, we can still try to
impose the Virasoro conditions as some natural constraints on the quantum states. We will
discuss this point later.

5.3. Quasi-classical limit

In the classical limit, the physical mass of the particle36

μ

2π
∼ e−√

λ/2, (272)

where λ is the physical coupling at the scale of the size of the box 2π , vanishes since λ → ∞.
Moreover we should focus on quantum states with large quantum numbers, i.e. we shall
consider a large number L → ∞ of particles on the ring.

Let us now think of (268)–(270) as the equations for the equilibrium condition for a system
of three kinds of particles: (θα, uj and vk), interacting between themselves and experiencing
the external constant forces (2πmα, 2πnu

j and 2πnv
k). The particles of the θ kind are also

placed into the external confining potential

V (z) = μ cosh(πMz), z = θ/M, (273)

where

M ≡ − log μ

2π
�

√
λ

4π
. (274)

In the classical limit, the potential becomes a square box potential with the infinite walls at
z = ±2 (see figure 23). Moreover, since this is a large box for the original variables we
can use the asymptotics (266) for the force between particles of the θ (or z) type. The box
potential provides the appropriate boundary conditions for the density of particles interacting
by the Coulomb force. Since they repeal each other, the density should be peaked around
z = ±2. To find the correct asymptotics close to these two points, we can consider (268) as
the equilibrium condition for the gas of Coulomb particles in the box.

36 For the O(N) sigma model, the beta function for the coupling is given by β ≡ ∂
∂ log 

√
λ() = N − 2 where 

is the cutoff of the theory. The dynamically generated mass must be of the form μ = f (
√

λ). The functional form
of f is fixed by the β function upon imposing independence on the cutoff of this physical quantity. Thus, for general

N, − log μ =
√

λ
N−2 + O(1).
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Figure 23. We plot V (z) for M = 1, 5, 9, 13 (lighter to darker gray). It is clear that the potential
approaches the blue box potential as M → ∞.

If the right and left modes (magnons) are not excited, we have only the states with U(1)

modes. In the classical limit, using the Coulomb approximation (266), we have for this sector
the following Bethe equation:

μ sinh πMzα − 2πm = − 1

M

L∑
β �=α

1

zα − zβ

.

In the continuous limit, the equation for the asymptotic density, L ∼ M → ∞, is given,
through the resolvent Gθ(z) = 1

M

∑L
β=1

1
z−zβ

, by

/Gθ(z) = −2πm, z ∈ Cθ , (275)

with inverse square root boundary conditions near ±2. The analytical function Gθ(x) having
a real part on the cut defined by (275), with support [−2, 2], with inverse square root boundary
conditions (the only compatible with the asymptotics at z → ∞: Gθ(z) → L

M
1
z
, is completely

fixed:

Gθ(z) =
(

2πmz + L
M√

z2 − 4
− 2πm

)
, L > 4π |m|M, (276)

which gives for the density

ρθ (z) = 1

π

(
2πmz + L

M√
4 − z2

)
. (277)

For a general solution with u and v magnons, we will also find the same asymptotics

ρ(z) ≡ 1

M

L∑
α=1

δ (z − zα) � 2κ±√
2 ∓ z

, z → ±2, (278)

with κ± yet to be determined through the energy and momentum of the solution, as we shall
explain in the following section.

We will consider the scenario where we have the same mode number mα = m for all
z particles. As proposed in [90, 102], this is the adequate set of states which will obey the
Virasoro constraints in the classical limit.
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First, we will relate the z behavior close to the walls, characterized by the constants
κ± with the energy and momentum E,P of the quantum state, as given by (279) and (262)
respectively. Then we shall eliminate θ ’s from the system of Bethe equations by explicitly
solving the first one in the limit considered. Finally, we will justify why we take the same
mode number m for all θ ’s by identifying the longitudinal modes to the excited mode numbers
mi in the Bethe ansatz setup. This constraint on the states will correspond to the Virasoro
conditions, at least in the classical limit.

5.3.1. Energy and momentum. The total momentum can be calculated exactly, before any
classical limit37:

P = μ

2π

∑
α

sinh(πθα) = mpLp −
∑

p

npSu
p −

∑
p

npSv
p, (279)

where Lp, Su
p and Sv

p are the numbers of Bethe roots with given mode numbers mp, nu,p and
nv,p respectively. To prove this, it suffices to sum (268) for all roots θα . The contribution of
S0(θ) terms cancels due to anti-symmetry while the second and third sums on the rhs of (268)
are replaced using (269) and (270), respectively.

Let us show how to calculate the energy (262) which is a fair less trivial task [90]. As a
byproduct, we will also reproduce the total momentum from the behavior at the singularities
at z = ±2 described by residua κ±. We want to compute the sum

E ≡ μ

2π

∑
α

cosh(πθα),

but we cannot simply replace this sum by an integral and use the asymptotic density ρθ (z) to
compute the energy. This is because the main contribution to the energy comes from large
θ ’s, near the walls, where the expression for the asymptotic density is no longer accurate.
It is natural for the classical limit since the particles become effectively massless and the
contributions of right and left modes are clearly distinguishable and located far from θ = 0.
We note that the energy is dominated by large θ ’s where, with exponential precision, we can
replace cosh πθα by ± sinh πθα for positive (negative) θα . Furthermore, the contribution from
θ ’s in the middle of the box is also exponentially suppressed since μ is very small. Thus, we
can pick a point a somewhere in the box not too close to the walls. One can think of a as being
somewhere in the middle. Then,

E =
∑
zα>a

μ

2π
sinh (πzαM) −

∑
zα<a

μ

2π
sinh (πzαM) ,

where, let us stress, the result is correct independent of point a within the interval −2 < a < 2
with the exponential precision. Each sum of sinh πθα can be substituted by the corresponding
rhs of the Bethe equation (268), thus giving

E � i

π

∑
zβ<a<zα

log S2
0(M[zα − zβ]) +

∑
α

m sign(zα − a)

− 1

2π

∑
j,α

sign(zα − a)i log
Mzα − uj + i/2

Mzα − uj − i/2

− 1

2π

∑
k,α

sign(zα − a)i log
Mzα − vk + i/2

Mzα − vk − i/2
(280)

37 For the closed string theory, we should take P = 0 which gives the level matching condition. Moreover, as we
shall explain later, we should also pick the same mode number for all particles, mα = m.
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As mentioned above we assume all mα to be the same38. Now we can safely go to the
continuous limit since in the first term the distances between z’s are now mostly of order 1.39

This allows one to rewrite the energy, with 1/M precision, as follows:

E � −M

π

∫ a

−2
dz

∫ 2

a

dw
ρθ(z)ρθ (w)

z − w
− M

2π

∫
ρθ (z)ρu(w)

z − w
sign(z − a) dz dw

− M

2π

∫
ρθ (z)ρv(w)

z − w
sign(z − a) dz dw + mM

∫
ρθ (z) sign(z − a) dz, (281)

where we are now free to use the asymptotic density ρθ (z). By the use of Bethe equations, we
managed to transform the original sum over cosh’s, highly peaked at the walls, into a much
smoother sum where the main contribution is now softly distributed along the bulk and where
the continuous limit does not look suspicious. From the previous discussion, we know that
this expression does not depend on a provided a is not too close to the walls. In fact, we
can easily see that it does not depend on a at all after taking the continuous limit leading to
the perfect box-like potential. To prove it, one notes that due to Bethe equations (268) the a
derivative of (281) is zero for all a ∈ ] − 2, 2[. Hence, we can even send a close to a wall:
a = −2 + ε, where ε is very small. But then the last three terms in (281) are precisely the
momentum (279), as explained in the beginning of this section. To compute the first term, we
can now use asymptotics (266) and (278). The contribution of this term is then given by

−M

π

∫ −2+ε

−2
dz

∫ 2

−2+ε

dw
ρθ(z)ρθ (w)

z − w

� −
∫ −2+ε

−2
dz

∫ 2

−2+ε

dw
4Mκ2

−
π(z − w)

√
2 + z

√
2 + w

� 2πMκ2
− (282)

so that

E � 2Mκ2
−π + P. (283)

If we compute the a-independent integral (281) near the other wall, i.e. for a = 2 − ε, we find

E � 2Mκ2
+π − P.

Therefore, equating the results one obtains the desired expressions for the energy and
momentum:

E ± P = 2πMκ2
± (284)

through the singularities of the density of rapidities at z = ±2, described by κ±. Together
with (274), this is precisely the classical formula (248)!

5.4. Elimination of θ ’s and AFS equations

In this section, we will show how the AFS equations (29), which are restriction of the BS
equations on the su(2) sub-sector, can be derived from the bootstrap approach. It is useful for
what follows, to introduce some new notations. Using the Zhukovsky map

z = x(z) +
1

x(z)
, |x(z)| > 1, (285)

38 as we will show it is this choice of states which reproduces the finite gap solution of [18] we mentioned in the first
section. We will come back to this point at a latter stage
39 Moreover, it is very important that the contribution from z’s near the walls ±2 is now suppressed since (266)

| log S2
0 (M(2 − zβ))| > | log S2

0 (M(2 − a))| ∼ 1/M.
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we define

y±
j ≡ x

(
uj ± i/2

M

)
, yj ≡ x

(uj

M

)
(286)

with the similar expressions for vl given by ỹ±
l and ỹl respectively.

In this section, for the purposes of comparison with the asymptotic AFS Bethe ansatz
for the N = 4 SYM theory, let us drop the v magnons, Jv = 0. Their contributions will be
easily restored later. As explained at the beginning of this section, we can write the first Bethe
equation, (268), as

/Gθ(z) + 2πm =
K∑

j=1

i log
Mz − uj − i/2

Mz − uj + i/2
, (287)

where

Gθ(z) = 1

M

∑
α

1

z − θα/M
=

∫ 2

−2

dz′ρθ (z
′)

z − z′ (288)

and /Gθ(z) is a real part of Gθ(z). We can find Gθ(z) as a function of uj .
Performing the inverse Zhukovsky map (285) and (286), we obtain the equation

/Gθ(z) + 2πm = i
K∑

j=1

(
log

x − y+
j

x − y−
j

+ log
x − 1/y+

j

x − 1/y−
j

)
. (289)

Introducing

H(x) = Gθ (z(x)) , (290)

we obtain from (289)

1

2
[H(x) + H(1/x)] = −2πm + i

K∑
j=1

(
log

x − y+
j

x − y−
j

+ log
x − 1

/
y+

j

x − 1
/
y−

j

)
. (291)

The solution of this equation, with the right asymptotics at infinity H(1/ε) = Gθ (1/ε) �
L/Mε, is as follows:

H(x) = i
K∑

j=1

⎡
⎢⎣ 2x

x2 − 1

(
1

y+
j

− 1

y−
j

)
−

2x2 log
y+

j

y−
j

x2 − 1
+ 2 log

y+
j x − 1

y−
j x − 1

⎤
⎥⎦

+
L

2M
+ 2πm

x − 1
+

L
2M

− 2πm

x + 1
. (292)

We can also compute the density of θ ’s as the imaginary part of the resolvent Gθ(z):

ρθ (Z(x)) = Im Gθ(Z(x))

π
= i

2π
[H(x) − H(1/x)] . (293)

Then from (284) and (278) we see that in classical limit (279), (262) can be expressed through
poles of H(x) in x = ±1. Extracting the residues of H(x) at the poles x = ±1, we can see
that

� = L + 2iM
K∑

j=1

(
1

y+
j

− 1

y−
j

)
(294)

P =
⎛
⎝m − i

2π

K∑
j=1

log
y+

j

y−
j

⎞
⎠� = 0. (295)

(294) is precisely the expression for the anomalous dimension (33) and (295) gives precisely
the zero momentum condition for the AFS equation (32) (for zero twists)!
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5.4.1. Derivation of the AFS formula. In this section we will exclude θ variables from (269)
and (270), using the θ -density calculated above, and obtain the AFS equation (29). We here
try to go the same way as the authors of [107], where similar variables were excluded in favor
of the magnon variables in Lieb–Wu equations for the Hubbard model.

Let us now exclude θ ’s from (269), using the result (292). Taking the log of (269), we
obtain ∑

j �=k

log
uk − uj + i

uk − uj − i
+ 2π ink =

∑
β

log
uk − θβ + i/2

uk − θβ − i/2
≡ ipk. (296)

Rewriting pk through density, we have

ipk = M

∫ 2

−2
log

z − w+
k

z − w−
k

ρθ (z) dz, (297)

where w±
k = uk±i/2

M
. The function ρθ (z) is given by equations (292) and (293). In appendix

H, we perform the integration and obtain the following result:

ipk =
∑

j

[
2 log

y−
k y+

j

(
y−

j y+
k − 1

)
y+

k y−
j

(
y+

j y−
k − 1

) − 2i(uj − uk) log

(
y−

j y−
k − 1

)(
y+

j y+
k − 1

)(
y−

j y+
k − 1

)(
y+

j y−
k − 1

)
]

− 2M

(
1

y+
k

− 1

y−
k

)⎡
⎣2πm − i

∑
j

log
y+

j

y−
j

⎤
⎦ + L log

y+
k

y−
k

. (298)

It leads to the following equations:(
y+

k

y−
k

)L

=
K∏

j �=k

y+
k − y−

j

y−
k − y+

j

(
1 − 1

/(
y−

j y+
k

)
1 − 1

/(
y+

j y−
k

)
)−1 ((

y−
j y−

k − 1
)(

y−
j y+

k − 1
) (

y+
j y+

k − 1
)(

y+
j y−

k − 1
)
)2i(uj −uk)

, (299)

which precisely coincide with the AFS [20] (29), including the expressions for energy and
momentum (294), (295).

5.4.2. Classical limit and KMMZ algebraic curve. To consider the classical limit, we trivially
restore the v roots from the previous calculation to find(

y+
k

y−
k

)L

=
Ju∏

j �=k

uk − uj + i

uk − uj − i
σ 2(uj , uk)

Jv∏
l=1

σ 2(vl, uk), (300)

and similarly for ỹk , and consider the limit where Ju, Jv, L ∼ M , so that the u and v roots
also scale as M. Then the expansion of this equation, after taking the log’s, gives to the leading
order in 1/M

πnk =
L

2M
yk + 2πm

1 − y2
k

+
1

y2
k − 1

1

M

Jv∑
l=1

1

1/yk − ỹl

+
y2

k

y2
k − 1

1

M

Ju∑
j �=k

1

yk − yj

. (301)

Finally, we can define the quasi-momentum [108]

p(x) =
L

2M
x + 2πm

1 − x2
+

1

x2 − 1

1

M

Jv∑
j=1

1

1/x − ỹj

+
x2

x2 − 1

1

M

Ju∑
j=1

1

x − yj

. (302)

Let us explain how it becomes precisely the quasi-momentum we had in the context of
the algebraic curve in section 5.1.1 in the classical theory. It is clear that we indeed have
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asymptotics (253) and (254) close to x = 0,∞. Then, to relate the residues of (302) to those
found from the algebraic curve in (252), we expand (294) in our limit as follows

� = L +
∑

j

2

y2
j − 1

+
∑

l

2

ỹ2
l − 1

(303)

and check that this is indeed what one finds from the quasi-momenta we just defined. Finally,
when we consider a large number of magnons Ju, Jv the roots in (302) condense into a number
of one-dimensional supports, the sums becoming the integrals along these lines giving the
same square root cuts as we had in the finite gap construction.

5.4.3. Geometric proof. The roots solving (268)–(270) with the same mode number will
condense into a single square root cut. When we consider more than one type of mode numbers
we see that the particles condense into a few distinct supports, one for each distinct mode
number:

C = C1 ∪ · · · ∪ CK.

We can now rescale the Bethe roots

(u, v, θ) = M(x, y, z) (304)

and define

p1 = −p2 = 1

M

Ju∑
i=1

1

z − xi

− 1

2M

L∑
β=1

1

z − zβ

p3 = −p4 = 1

M

Jv∑
l=1

1

z − yl

− 1

2M

L∑
β=1

1

z − zβ

.

(305)

Then we can recast the Bethe equations in this scaling limit as follows:

x ∈ Cu, p1
+ − p2

− = 2πnu

x ∈ Cθ , p2
+ − p3

− = 2πm

x ∈ Cv, p3
+ − p4

− = 2πnv

x ∈ Cθ , p4
+ − p1

− = 2πm,

(306)

where we

• considered, as in the preceding section, one single mode number m for all rapidities;
• dropped the momentum μ sinh θ ; as we explained in section 5.3, we can do this provided

we replace it by the boundary conditions (278).

These equations tell us that p′
1(z), p

′
2(z), p

′
3(z), p

′
4(z) form four sheets of the Riemann surface

of an analytical function p′(z) (see figure 24).
They can also be written as holomorphic integrals around the infinite B cycles:∮

Bu
j

dp = 2πnu,j nj = 1, . . . , Ku∮
Bv

j

dp = 2πnv,j nj = 1, . . . , Kv (307)∮
Bθ

dp = 2πm,
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Figure 24. Structure of the curve coming from the Bethe ansatz side. This figure is related to
figure 1 by means of the Zhukovsky map.

where the first two conditions correspond to the equations in the first and third lines of (143),
respectively, while the last one corresponds to any of the equations of the second and fourth
lines of (143). The B cycles are defined as in figure 24.

We found two Riemann surfaces which we plotted in figures 1 and 24, respectively. The
equivalence between these two curves is achieved through the Zhukovsky map [90]:

z = x +
1

x

and amounts to the equivalence between the finite gap solutions for the classical theory and
the Bethe ansatz solutions in the scaling limit.

5.5. Virasoro modes

We established the equivalence between

• all classical solutions following from the PCF action (244) and subject to the Virasoro
conditions tr (jτ ± jσ )2 = −2κ2

± as described by the construction of the algebraic curve
of section 5.1.1,

• the Bethe ansatz quantum solution (268) and (269) in the scaling limit (304) with all
rapidities θα having the same mode number m.

In the context of string theory, one is interested in quantizing the Polyakov string action

S =
√

λ

8π

∫
dσ dτ

√
hhab(tr ∂ag

†∂bg − ∂aY∂bY ). (308)

Due to its local reparameterization and Weyl symmetries, one can then fix the target spacetime
Y as in (247) and reduce the action to (244). However, due to the residual reparameterization
symmetry

τ ± σ → f±(τ ± σ), (309)

one must keep in mind that the original presence of the worldsheet metric field imposes the
fcat that the stress energy tensor vanishes. This is precisely the Virasoro conditions.

On the other hand, from the field theory point of view the Bethe ansatz equations (268)–
(270) should describe all possible states of the theory, and not only those for which

〈ψ |T ab|φ〉 = 0. (310)
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Thus, in view of the equivalence we proved, we are led to the conclusion that if we start
with some classical solution with one θ cut and some u and v cuts, the excitation of additional
microscopic θ cuts should correspond to the inclusion of the longitudinal modes which we
drop in the context of string theory. Indeed, these massless (from the worldsheet point of
view) excitations coming from our conformal gauge choice appear if one expands the action
around the classical solution without fixing the Virasoro conditions from the beginning (see,
for instance, expression (2.7) and the discussion following it in [86]). In this section we verify
this claim therefore justifying this single θ cut restriction, first proposed in [102] and given
the interpretation as the Virasoro condition in [90].

In (280), we computed the energy of a quantum state where all mode numbers mα = m

were the same. If we change the mode numbers of a few θ ’s we will have a macroscopic
support with particles having the mode number m surrounded by some microscopic domains,
linear supports, with mode numbers mβ < m (to the left of it) and mβ > m (to its right).

Let us assume that we excite them one at a time and focus on the first particle whose
mode number we change. Before we do it, it is in equilibrium due to the exponential force
exerted by the wall of the box (273) and by (an equal) force produced by all the other particles
and by the constant force 2πm—see (268). When we change the particle mode number, the
constant force increases pushing the particle against the wall. However since the forces are
exponential the shift will be very small, much smaller than 1/M—the characteristic distance
between the neighboring rapidities. Then let us consider the particles in the middle of the
box, those whose position is well described by the asymptotic density ρ(z). They only feel
the change in the mode number through the new position of the corresponding θ particle.
Since this shift is very small the asymptotic density, to the order we are interested, is not
changed. Thus, in this procedure of changing a few mode numbers we conclude that, when
going to the continuous limit in (280), only the second term will lead to a different result
so that

δE =
∑

n

|n|Nm+n, (311)

where Nn is the number of particles with mode number n. We found in this way the massless
(worldsheet) modes associated with the local reparameterization symmetry of the worldsheet.
These modes appear when considering the fluctuations around a classical solution [86] and
are the only ones not taken into account by the finite gap algebraic curve (see section 3).

6. Summary

In this work, we review some aspects of integrability in AdS/CFT. Particular attention is paid
to quasi-classical effects in integrable classical sigma models, describing strings in curved
AdS backgrounds, and finite size effects in the integrable spin chains arising in the CFT side
of the duality.

• In section 1, we review the most important constructions such as the classical algebraic
curve for the superstring action and the quantum Bethe equations—including the all-loop
Beisert–Staudacher (BS) equations—and their scaling limit.

• In section 2, we show how the finite size corrections to the scaling limit could be computed
in a systematic way to arbitrary order in 1/L, where L is the spin chain length. The
procedure is similar to the standard WKB expansion. Close to the edges of the distribution
of Bethe roots, we find a universal Airy-type behavior governing the solutions to Bethe
equations. For a single cut solution in the sl(2) sub-sector, we explicitly computed the
energy up to the 1/L2 order. The explicit result is quite involved and is given in (123).
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This method was recently applied to the strong coupling limit of the BS equations [123]
where a prediction for the two-loop correction to the energy of the folded string was made
(extending earlier one-loop results of [124]). The results have been partly recovered using
different methods [66, 67].

Then we consider the nested Bethe ansatz. As a technical tool we make use of a
curious duality among the systems of Bethe ansatz equations, which we call bosonic
duality. In the scaling limit, it amounts to the interchange of the Riemann surface sheets.
An integral equation describing the leading finite size corrections in a closed form is
presented.

• In section 3, we develop a method of computation of the quasi-classical corrections to
the classical spectrum of string theory in the AdS5 × S5 background, based solely on
the classical integrable structure of the theory. The idea of this method is inspired by
the analytical structure of the quasi-momenta of one-dimensional quantum mechanical
systems. Quantum excitations are identified with poles on the algebraic surface (see
figure 1) whose residue is fixed by the integer value of the classical action variables.
In this way, we reproduced results of the previous direct calculations based on the
string worldsheet action. The method we developed can be applied to a wide range of
integrable field theories with a known classical algebraic curve description. In particular,
strings in the AdS4/CP

3 background can be studied using the technology developed here
[125, 126].

Furthermore, from a more mathematical point of view, the algebraic curve method
has been rederived for the SU(2) subsector of the AdS5/CFT4 duality [17].

Moreover, this formalism allows one to compute the quantum corrections to the classi-
cal energies of complicated string configurations, going beyond the simplest circular string
solutions. In particular, the method was applied to the giant magnon solution [127–130]
with perfect agreement with the finite size Lücsher correction [131–134]. A direct com-
putation of the one-loop shift around the finite volume giant magnon from the string
worldsheet action seems to be an almost impossible task. Another example where the
method could be efficiently applied is the folded string solution dual to the twist two
operators in the YM theory. These operators are relevant in the study of gluon scattering
amplitudes and are therefore particularly interesting.

• In section 4, we show that the finite size corrections to the Bethe equations in the scaling
limit can be seen as describing a sea of virtual quasi-classical fluctuations in the sense
that they can be interpreted as an infinite sum over all the zero point energy oscillations.
The condition that the finite size corrections match the quasi-classical excitations is a
very nontrivial self-consistency restriction on the underlying system of Bethe ansatz
equations. At strong coupling, such reasoning allows one to derive the leading quantum
correction to the dressing factor, the Hernandez–Lopez phase (37). The same sort of
arguments proved to be extremely useful [125, 126] in the context of the novel AdS4/CFT3

duality [110].
• Finally, in section 5 we consider standard relativistic sigma models, such as the S3 sigma

model which can be thought of as toy models for the full superstring theory. Such models
are described by relativistic particles with some isotopic degrees of freedom. Surprisingly,
and interestingly, we found out that once the momenta of the physical particles is integrated
out we are left with a complicated system of effective Bethe equations for the isotopic
degrees of freedom which precisely coincide with the BS equations in the su(2) sector!
This constitutes very strong evidence in favor of a more elegant (and yet to be found)
description of the full spectrum of AdS/CFT, containing such an extra (hidden) level of
degrees of freedom.
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Appendix A. Transfer matrix invariance and the bosonic duality for SU (K|M )
supergroups

In this section, we review the formalism of [78] which allows one to derive the transfer matrices
of usual (super) spin chains in any representation. We will use this general formalism to prove
the invariance under the bosonic dualities of all possible transfer matrices one can build. The
transfer matrices presented in section 2.2.2 can be obtained trivially using this formalism40.

As mentioned in section 2.2, for the standard SU(K|M) super spin chains (based on
the standard R-matrix R(u) = u + iP with P being the superpermutation), we can find the
(twisted) transfer matrix eigenvalues for the single column young tableau with a boxes through
the non-commutative generating functions [78, 79]

∞∑
a=0

(−1)a eia∂u
Ta(u)

QK,M(u + (a − K + M + 1)i/2)
eia∂u =

−→∏
(x,n)∈γ

V̂ −1
x,n (u), (A.1)

where γ is a path starting from (M,K) and finishing at (0, 0) (always approaching this point
with each step) in a rectangular lattice of size M × K as in figure 6,41 x = (m, k) is point
in this path and n = (0,−1) or (−1, 0) is the unit vector looking along the next step of the
path. Each path describes in this way a possible Dynkin diagram of the SU(K|M) supergroup
with corners denoting fermionic nodes and straight lines denoting bosonic ones; see figure 6.
Finally,

V̂ −1
(m,k),(0,−1)(u) = eiφk

Qk,m(u + i(m − k − 1)/2)

Qk,m(u + i(m − k + 1)/2)

Qk−1,m(u + i(m − k + 2)/2)

Qk−1,m(u + i(m − k + 0)/2)
− ei∂u

V̂ −1
(m,k),(−1,0)(u) =

(
eiϕm

Qk,m−1(u + i(m − k − 2)/2)

Qk,m−1(u + i(m − k + 0)/2)

Qk,m(u + i(m − k + 1)/2)

Qk,m(u + i(m − k − 1)/2)
− ei∂u

)−1

,

where Qk,m is the Baxter polynomial for the roots of the corresponding node42 and {φk, ϕm}
are twists introduced in the transfer matrix [79]. Let us then consider a bosonic node like
that in the middle of figure 6 (the vertical bosonic node is treated in the same fashion). If
the position of this node on the M × K lattice is given by (m, k), then it is obvious that the

40 We should mention that the transfer matrices in section 2.2.2 are not exactly the same we have in this appendix but
can be obtained from these via a trivial rescaling in u which obviously does not spoil the invariance of these objects.
41 Notice that the path goes in opposite direction compared to the labeling a of the Baxter polynomial Qa used before.
In the notation of this section Qk,m corresponds to the node is at position (m,k) in this lattice.
42 Q̂0,0 is normalized to 1. If we are considering a spin in the representation where the first Dynkin node has a nonzero
Dynkin label then QM,K will play the role of the potential term. In general the situation is more complicated, see
[78]. In any case we are mainly interested in the dualization of roots which are not momentum carrying thus we need
not care about such matters.
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only combination containing Qm,k on the right-hand side of (A.1) comes from the product of
V̂ −1

(m,k),(−1,0)(u)V̂ −1
(m+1,k),(−1,0)(u) which reads as[

eiϕm+ϕm+1
Qk,m+1(u + i(m − k + 2)/2)

Qk,m+1(u + i(m − k + 0)/2)

Qk,m−1(u + i(m − k − 2)/2)

Qk,m−1(u + i(m − k + 0)/2)
+ e2i∂u

−
(

eiϕm+1
Qk,m(u + i(m − k − 1)/2)

Qk,m(u + i(m − k + 1)/2)

Qk,m+1(u + i(m − k + 2)/2)

Qk,m+1(u + i(m − k + 0)/2)

+ eiϕm
Qk,m−1(u + i(m − k + 0)/2)

Qk,m−1(u + i(m − k + 2)/2)

Qk,m(u + i(m − k + 3)/2)

Qk,m(u + i(m − k + 1)/2)

)
ei∂u

]−1

. (A.2)

So, if we want to study the bosonic duality on the node (k,m) and its relation with the invariance
of several transfer matrices, we need to study the last two lines of this expression. For simplicity
let us shift u, omit the subscript k in the Baxter polynomials Qk,m−1,Qk,m,Qk,m+1 and define
the reduced transfer matrix as

t (u, ϕm, ϕm+1) ≡ eiϕm+1
Qm(u − i)

Qm(u)

Qm+1(u + i/2)

Qm+1(u − i/2)
+ eiϕm

Qm−1(u − i/2)

Qm−1(u + i/2)

Qm(u + i)

Qm(u)
. (A.3)

Note that the absence of poles at the zeros of Qm yields precisely the Bethe equations for this
auxiliary node.

A.1. Bosonic duality ⇒ transfer matrix invariance

Thus, to check the invariance of the transfer matrices in all representations it suffices to verify
that the reduced transfer matrix t (u, ϕm, ϕm+1) is invariant under ϕm ↔ ϕm+1 and Qm → Q̃m

where

2i sin

(
ϕm+1 − ϕm

2

)
Qm−1(u)Qm+1(u)

= ei ϕm+1−ϕm
2 Qm(u − i/2)Q̃m(u + i/2) − e−i ϕm+1−ϕm

2 Qm(u + i/2)Q̃m(u − i/2), (A.4)

which can be easily verified. If suffices to replace, in t (u, ϕm, ϕm+1) in (A.3),

Qm(u − i)

Qm(u)
→ e−i(ϕm+1−ϕm) Q̃m(u − i)

Q̃m(u)

+ 2i e−i ϕm+1−ϕm
2 sin

(
ϕm+1 − ϕm

2

)
Qm−1(u + i/2)Qm+1(u + i/2)

Qm(u)Q̃m(u)
,

Qm(u + i)

Qm(u)
→ e+i(ϕm+1−ϕm) Q̃m(u + i)

Q̃m(u)

− 2i e−i ϕm+1−ϕm
2 sin

(
ϕm+1 − ϕm

2

)
Qm−1(u − i/2)Qm+1(u − i/2)

Qm(u)Q̃m(u)
,

which are obvious consequences of the bosonic duality.

A.2. Transfer matrix invariance ⇒ bosonic duality

On the other hand suppose that we have two solutions of Bethe equations, one of them
characterized by the Baxter polynomials {. . . ,Qm−1,Qm,Qm+1, . . .} with twists {. . . , ϕm,

ϕm+1, . . . and the other with {. . . ,Qm−1, Q̃m,Qm+1, . . .} with twists {. . . , ϕm+1, ϕm, . . .} for
which the transfer matrices are the same, that is,

t (u, ϕm, ϕm+1) = t̃ (u, ϕm+1, ϕm). (A.5)
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Then we can show that these two solutions are related by the bosonic duality (A.4). Indeed if
we build the Wronskian43 like object

W(u) ≡ ei ϕm+1−ϕm
2

Qm(u − i/2)Q̃m(u + i/2)

Qm−1(u)Qm+1(u)
− e−i ϕm+1−ϕm

2
Qm(u + i/2)Q̃m(u − i/2)

Qm−1(u)Qm+1(u)
,

we can easily check that

W(u + i/2) − W(u − i/2)

= −e−i ϕm+1+ϕm
2

Qm(u)Q̃m(u)

Qm−1(u − i/2)Qm+1(u + i/2)
(t (u, ϕm, ϕm+1) − t̃ (u, ϕm+1, ϕm)) = 0.

Since by definition W(u) is a rational function, this means that it must be a constant. Thus if
ϕm �= ϕm+1, we must have Km + K̃m = Km + Km+1 and the value of W can be read from the
large u behavior. In this way, we obtain precisely the bosonic duality (A.4). If ϕm = ϕm+1,
then we see that Km + K̃m = Km + Km+1 + 1 and we will obtain a different value for constant
W which will correspond to the untwisted bosonic duality described in section 2.2.5.

Appendix B. Quasi-momenta for a generic rigid circular string

To establish the link between the embedding coordinate solution (175) with the coset’s
notations, we introduce the matrices

R =
3∏

i=1

e
i
2 (wiτ+miσ)�i · R0 ∈ SU(4)

and

Q = e
i
2 κτ�1 ·

2∏
i=1

e− i
2 (wi τ+kiσ )�i+1 · Q0 ∈ SU(2, 2),

where �i are the Cartan generators:

�1 = diag(+, +,−,−), �2 = diag(+,−, +,−), �3 = diag(−, +, +,−),

and R0 = e�42θ e�64γ and Q0 = e�′
42ψ e�′

64ρ are constant matrices with

(cos γ, sin γ cos θ, sin γ sin θ) =
(√

J1

w1
,

√
J2

w2
,

√
J3

w3

)
,

(cosh ρ, sinh ρ cos ψ, sinh ρ sin ψ) =
(√

E
κ

,

√
S1

w1
,

√
S2

w2

)

and �42,�64,�
′
42,�

′
64 given respectively by

1

2

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

1

2

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠ ,

1

2

⎛
⎜⎜⎝

0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

⎞
⎟⎟⎠ .

43 We would like to thank A Zabrodin and V Kazakov for suggesting this nice interpretation for the bosonic duality.
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Let us ignore for a moment the fact that, for a generic choice of mode numbers mi, kj ,
these matrices are not always periodic. Then, to describe the circular solutions we can use, as
representative g ∈ PSU(2, 2|4), the block diagonal matrix

g =
(
Q | 0

0 | R
)

, (B.1)

which indeed leads to (175) under the map (5).
What is particular about this solution is that, as follows trivially from the form of the

matrices R and Q, the current

J = −g−1 dg,

and therefore also the flat connection A(x) in (9) are constant matrices! Then the computation
of (10) is trivial and the quasi-momenta p(x) are simply obtained from the eigenvalues of
2π
i A(x).

Before going on, let us comment on the subtle point ignored above—the periodicity of
the rotation matrices R (and Q). For some integers mi , we see that this matrix could become
anti-periodic. This means that in principle we should use another representative, Rperiodic,
for which we should still have (5) but which should be periodic. However, if both R and
Rperiodic obey these equations this means that they are related by an anti-periodic SP (4) gauge
transformation. This means that for the purpose of computing the quasi-momenta p(x), we
can indeed always use the element (139) provided we keep in mind that if R is anti-periodic
we can recover the real quasi-momenta through

{eip̂1 , eip̂2 , eip̂3 , eip̂4 |eip̃1 , eip̃2 , eip̃3 , eip̃4}For the true representative Rperiodic

= {eip̂1 , eip̂2 , eip̂3 , eip̂4 | − eip̃1 ,−eip̃2 ,−eip̃3 ,−eip̃4}Using the anti-periodic Rinstead.

The same kind of statement hold for the AdS element Q.
The computation of the quasi-momenta is then straightforward. The S5 components p̃i

are given in terms of the eigenvalues44 of the symmetric matrix:

Ã(x) = π

⎛
⎜⎜⎝

−ã+(1/x) b̃+ −c̃(1/x) d̃(x)

b̃+ ã+(x) d̃(1/x) c̃(x)

−c̃(1/x) d̃(1/x) ã−(x) b̃−
d̃(x) c̃(x) b̃− −ã−(1/x)

⎞
⎟⎟⎠ (B.2)

with

ã±(x) = ±ã(x) − m3 cos θ

ã(x) = −m1 − w1x + (m2 − w2x) cos θ + x cos 2γ (−w1 + m1x + (w2 − m2x) cos θ)

x2 − 1
b̃± = (m2 ∓ m3) cos γ sin θ

c̃(x) = (m2 + m3)x
2 − (m2 − m3) − 2w3x

x2 − 1
sin γ sin θ

d̃(x) = −m1 + w1x + (m2 − w2x) cos θ

x2 − 1
sin 2γ

44 To each eigenvalue, we might need to add a multiple of π in such a way that its asymptotics become those prescribed
in section 1.1.1. If R is periodic this multiple should contain an even number of π ’s whereas if it is anti-periodic, we
should add πn with n odd to each quasi-momentum—see discussion in the text.
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while the AdS quasi-momenta p̂i are the eigenvalues of

Â(x) = π

⎛
⎜⎜⎜⎝

−â+(1/x) b̂+ −ĉ(x) d̂(x)

b̂+ â+(x) d̂(x) ĉ(x)

ĉ(x) −d̂(x) â−(x) b̂−
−d̂(x) −ĉ(x) b̂− −â−(1/x)

⎞
⎟⎟⎟⎠ (B.3)

with

â±(x) = ±2πκ − k1(x
2 − 1) cos θ

x2 − 1
cosh ρ + k2 cos ψ

b̂± = (k2 cosh ρ ∓ k1) sin ψ

ĉ(x) = k2(x
2 + 1) − 2w2x

x2 − 1
sin ψ sinh ρ

d̂(x) = k1(x
2 + 1) − 2w1x

x2 − 1
cos ψ sinh ρ.

For the simple su(2) or sl(2) solutions we have, amongst other conditions, θ = ψ = 0 which
simplifies the computation drastically.

Appendix C. BMN string, details

This appendix serves as a complement to section 3.3.1. The quasi-momenta with the correct
poles located at (186) and residues given by (184) are given by

δp̂2 = â +
δα+

x − 1
+

δα−
x + 1

+
∑

i=3̂,4̂,3̃,4̃

∑
n

α
(
x 2̂i

n

)
N 2̂i

n

x − x 2̂i
n

−
∑

i=3̂,4̂,3̃,4̃

∑
n

α
(
x 1̂i

n

)
N 1̂i

n

1/x − x 1̂i
n

δp̂3 = b̂ +
δβ+

x − 1
+

δβ−
x + 1

−
∑

i=1̂,2̂,1̃,2̃

∑
n

α
(
x 3̂i

n

)
N 3̂i

n

x − x 3̂i
n

+
∑

i=1̂,2̂,1̃,2̃

∑
n

α
(
x 4̂i

n

)
N 4̂i

n

1/x − x 4̂i
n

,

where the last term guarantees that δp̂1,4(x) = −δp̂2,3(1/x) have right poles with appropriate
residues in the physical domain. Analogously,

δp̃2 = ã +
δα+

x − 1
+

δα−
x + 1

−
∑

i=3̂,4̂,3̃,4̃

∑
n

α
(
x 2̃i

n

)
N 2̃i

n

x − x 2̃i
n

+
∑

i=3̂,4̂,3̃,4̃

∑
n

α
(
x 1̃i

n

)
N 1̃i

n

1/x − x 1̃i
n

(C.1)

δp̃3 = b̃ +
δβ+

x − 1
+

δβ−
x + 1

+
∑

i=1̂,2̂,1̃,2̃

∑
n

α
(
x 3̃i

n

)
N 3̃i

n

x − x 3̃i
n

−
∑

i=1̂,2̂,1̃,2̃

∑
n

α
(
x 4̃i

n

)
N 4̃i

n

1/x − x 4̃i
n

(C.2)

and δp̃1,4(x) = −δp̃2,3(1/x). From the large x behavior of these quasi-momenta, one obtains

â = −
∑

n

2πn√
λJ

∑
i=3̂,4̂,3̃,4̃

N 1̂i
n , b̂ = +

∑
n

2πn√
λJ

∑
i=1̂,2̂,1̃,2̃

N 4̂i
n ,

ã = +
∑

n

2πn√
λJ

∑
i=3̂,4̂,3̃,4̃

N 1̃i
n , b̃ = −

∑
n

2πn√
λJ

∑
i=1̂,2̂,1̃,2̃

N 4̃i
n ,

the level matching condition (183) and

δα+ − δα− = −
∑

n

2πn√
λJ

∑
i=3̂,4̂,3̃,4̃

∑
j=1̂,2̂

Nij
n ,
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δβ+ − δβ− = −
∑

n

2πn√
λJ

∑
i=3̂,4̂,3̃,4̃

∑
j=3̃,4̃

Nij
n .

Appendix D. su(2) circular string, details

In this appendix, we present the details of the calculations from section 3.3.2 of the fluctuation
frequencies around the one-cut su(2) solution.

D.1. S5 modes

We start from the ansatz (192). We have four types of poles (1̃3̃, 2̃4̃, 2̃3̃, 1̃4̃). Thus,

f (x) = 1
2 (δp̃2(x) + δp̃3(x))

must have simple poles at x 2̃4̃
n and x 1̃3̃

n with residues 1
2α

(
x 1̃3̃

n

)
and − 1

2α
(
x 2̃4̃

n

)
respectively (see

figure 17 or (184). The same holds for

f (1/x) = − 1
2 (δp̃4(x) + δp̃1(x)).

Moreover, since the residues of δp̃i are connected to the AdS quasi-momenta (16) and these
are given by (194) we conclude that f (x) should be regular at x = ±1. Thus, we obtain

f (x) = −
∑

n

(
N 2̃4̃

n

2

[
α
(
x 2̃4̃

n

)
x − x 2̃4̃

n

+
α
(
x 2̃4̃

n

)
x 2̃4̃

n (1 − xx 2̃4̃
n )

]
− (2̃4̃ → 1̃3̃)

)
. (D.1)

Then

g(x) = K(x)

2
(δp̃2(x) − δp̃3(x))

must have simple poles at x 2̃4̃
n , x 1̃3̃

n and x 2̃3̃
n with residues − 1

2α
(
x 1̃3̃

n

)
,− 1

2α
(
x 2̃4̃

n

)
and −α

(
x 2̃3̃

n

)
respectively while

g(1/x) = K(x)

2
(δp̃4(x) − δp̃1(x))

must have simple poles at x 2̃4̃
n , x 1̃3̃

n and x 1̃4̃
n with residues 1

2α
(
x 1̃3̃

n

)
, 1

2α
(
x 2̃4̃

n

)
and α

(
x 1̃4̃

n

)
respectively. In contrast to f (x), this function may have poles at ±1 so we arrive at

g(x) = a +
α−

x2 − 1
+

xα+

x2 − 1
+
∑

n

(
N 1̃4̃

n

α
(
x 1̃4̃

n

)
K
(
1
/
x 1̃4̃

n

)
x 1̃4̃

n

(
1 − xx 1̃4̃

n

) − N 2̃3̃
n

α
(
x 2̃3̃

n

)
K
(
x 2̃3̃

n

)
x − x 2̃3̃

n

)

+
∑

n

(
N 2̃4̃

n

2

[
α
(
x 2̃4̃

n

)
K
(
1
/
x 2̃4̃

n

)
x 2̃4̃

n

(
1 − xx 2̃4̃

n

) − α
(
x 2̃4̃

n

)
K
(
x 2̃4̃

n

)
x − x 2̃4̃

n

]
+ (2̃4̃ → 1̃3̃)

)
. (D.2)

Finally, the remaining constants are fixed by the large x asymptotic (182) to be

a = − 2π√
λ

∑
n

[
m
(
N 1̃3̃

n + N 2̃4̃
n

)
+ 2mN 2̃3̃

n

]
α+ = 2π√

λ

∑
n

[(
N 1̃3̃

n + N 2̃4̃
n

)(
x 1̃3̃

n (m + n) − J − K
(
x 1̃3̃

n

))
+ N 1̃4̃

n

(
x 1̃4̃

n n − 2J
)

+ N 2̃3̃
n

2m + n

x 2̃3̃
n

]

α− = 2π√
λ

∑
n

[
N 1̃3̃

n + N 1̃4̃
n + N 2̃3̃

n + N 2̃4̃
n

]
n.

Then, from the residue at x = 1 we read δE = α+√
m2+J 2 .
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D.2. Fermionic modes

Arguments similar to those in the previous section lead to

f (x) = 2π√
λ

x

x2 − 1

∑
n

[
N 1̂4̃

n + N 2̂4̃
n − N 3̂1̃

n − N 4̂1̃
n

xx 1̂4̃
n − 1

+ x
N 3̂2̃

n + N 4̂2̃
n − N 1̂3̃

n − N 2̂3̃
n

x − x 3̂2̃
n

]

and

g(x) = b +
β−

x2 − 1
+

xβ+

x2 − 1

+
2π√

λ

∑
n

[(√
m2 + J 2xn + n

(
1 − x2

n

))(
N 1̂4̃

n + N 2̂4̃
n + N 3̂1̃

n + N 4̂1̃
n

)
(1 − xxn)

(
x2

n − 1
)

− xn

(√
m2 + J 2xn + (n + m)

(
1 − x2

n

))(
N 3̂2̃

n + N 4̂2̃
n + N 1̂3̃

n + N 2̂3̃
n

)
(x − xn)

(
x2

n − 1
)

]
,

where

b = 2πm√
λ

∑
n

(
N 1̂3̃

n + N 2̂3̃
n + N 1̂3̃

n + N 1̂3̃
n

)

β− = 2π√
λ

∑
n

(
xn

√
m2 + J 2

x2
n − 1

− n

)(
N 1̂3̃

n + N 1̂4̃
n + N 2̂3̃

n + N 2̂4̃
n + N 3̂1̃

n + N 3̂2̃
n + N 4̂1̃

n + N 4̂2̃
n

)

β+ = 2π√
λ

∑
n

[(
J − nxn +

x2
n

√
m2 + J 2

x2
n − 1

) (
N 1̂4̃

n + N 2̂4̃
n + N 3̂1̃

n + N 4̂1̃
n

)

+

(√
m2 + J 2

x2
n − 1

− m + n

xn

) (
N 1̂3̃

n + N 2̂3̃
n + N 3̂2̃

n + N 4̂2̃
n

)]
.

The AdS5 part of the quasi-momenta is given by

δp̂2(x) = 2π√
λ

x

x2 − 1

(
+δ� − 2

N 1̂3̃
n + N 1̂4̃

n

xxn − 1
− 2x

N 2̂3̃
n + N 2̂4̃

n

xn − x

)

δp̂3(x) = 2π√
λ

x

x2 − 1

(
−δ� + 2

N 4̂1̃
n + N 4̂2̃

n

xxn − 1
+ 2x

N 3̂1̃
n + N 3̂2̃

n

xn − x

)
,

and δp̂1,4(x) = −δp̂2,3(1/x). The constant � can be found by fixing the residues at ±1 for
δp̂i and δp̃i to be equal (16) and is given in the main text (196).

Appendix E. sl(2) circular string

The eigenvalues of (B.2) and (B.3) for the sl(2) circular string described in the beginning of
section 3.3.3 yield the most general one-cut quasi-momentum connecting p̂2 and p̂3. (Due
to the x → 1/x symmetry, p̂1 and p̂4 will also be connected by a cut, but this will be in an
unphysical domain, that is, inside the unit circle.) Explicitly, we find

p̃1,2 = −p̃3,4 = 2π
J x + m

x2 − 1
, (E.1)
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and ⎛
⎜⎜⎝

p̂1

p̂2

p̂3

p̂4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−p̂2(1/x)

+p̂2(x)

−p̂2(x)

+p̂2(1/x)

⎞
⎟⎟⎠ ,

where [24]

p̂2 = kπ

(
1 − (Cx + 1)

√
x2 − 2BCx + C2

C(x2 − 1)

)
(E.2)

and

w ≡ k

2

(
C +

1

C

)
, B = 1 +

2S
w

. (E.3)

From all solutions of (197) and (E.3) for solutions for C and B, we should pick that for which
we have a real cut outside the unit circle.

In the rest of this appendix, we will excite this solution by adding poles to quasi-momenta
as we did for the su(2) solution. In this way, we shall find the energy shifts around this classical
solution. Moreover, as for the su(2) string, we shall consider the AdS5, S

5 and fermions
separately, assuming for simplicity the Riemann identity (183) to be satisfied for each of the
sectors separately—the result, as before, holds if we relax this stronger assumption.

E.1. The AdS5 excitations

For these excitations, the S5 quasi-momentum remains untouched because its asymptotics do
not change and it is still only allowed to have simple poles at ±1. Due to the Virasoro coupling
of these quasi-momenta to the AdS5 ones through the poles at ±1 (16), we see that δp̂i must
have no poles at these points. The only poles of these quasi-momenta should be located at

x
îĵ
n with residues given by (184)—see figure 17. Finally, as explained in section 3.3.2, the

perturbed quasi-momenta should have inverse square behavior close to the branch points of
the classical solution.

Thus, from the same kind of reasoning we saw in the previous section for the su(2)

circular string, we find (E.6) for the AdS3 excitations connecting sheets (p̂2, p̂3) and (p̂1, p̂4)

and (E.7) for the remaining AdS5 excitations uniting (p̂1, p̂3) and (p̂2, p̂4). From the large x
behavior (182) of these quasi-momenta, we read the energy shifts45

δE =
∑

n

(
N 2̂3̂

n

[
k − n

k

x 2̂3̂
n − C−1

x 2̂3̂
n + C−1

+
nw

kκ

]
+ N 1̂4̂

n

[
k + n

k

x 1̂4̂
n − C

x 1̂4̂
n + C

+
nw

kκ

])
(E.4)

and

δE =
∑

n

N 1̂3̂
n

[
K
(
x 1̂3̂

n

)
k + n

(
x 1̂3̂

n − C
)

k
(
x 1̂3̂

n + C
) +

nw

kκ

]
+ N 2̂4̂

n

[
K
(
x 2̂4̂

n

)
k + n

(
x 2̂4̂

n − C
)

k
(
x 2̂4̂

n + C
) +

nw

kκ

]
, (E.5)

where, as for the su(2) string, we denote the square root in the classical solution (E.2) by
K(x).

45 These AdS3 excitations were also found in a similar way by K Zarembo in relation with the finite size corrections
computation [61] (according to the private communication).
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E.1.1. AdS3 excitations—details. In strict analogy to what we have already seen for the su(2)

solution, the two (left and right) physical excitations inside the sl(2) sector described by the
AdS3σ model are given by the poles, connecting the pairs of sheets (p̂2, p̂3) and (p̂1, p̂4). We
denote the number of such poles by N2̂3̂ and N1̂4̂ respectively.

As explained above, the AdS5 excitation shifts of p̂’s have no poles at ±1 and must present
an inverse square root behavior close to the branch points of the classical solution. Thus, we
can write

δp̂2(x) = 2π√
λK(x)

∑
n

(
N 2̂3̂

n

xan

x − x 2̂3̂
n

+ N 1̂4̂
n

xān

x − 1/x 1̂4̂
n

)
, (E.6)

where

K(x) ≡
√

x2 − 2BCx + C2

and the position of the roots is given by (178). Fixing the residues at x 2̂3̂
n and x 1̂4̂

n according to
(184), we have

an = 2Cx 2̂3̂
n (k − n)

k
(
Cx 2̂3̂

n + 1
) , ān = − 2C(k + n)

k
(
C + x 1̂4̂

n

) .
The large x asymptotic (182) is consistent if the Riemann bilinear identity (183) is satisfied∑

n

(
N 2̂3̂

n + N 1̂4̂
n

)
n = 0,

and the energy shift is then given by (E.4)).

E.1.2. The remaining AdS5 excitations—details. These correspond to simple poles
connecting (p̂1, p̂3) and (p̂2, p̂4) for which

δp̂2(x) = 2π√
λ

∑
n

[
N 1̂3̂

n x
(
an + bn+cnx

K(x)

)
(
x − x 1̂3̂

n

)(
x − 1

/
x 1̂3̂

n

) +
N 2̂4̂

n x
(
ān + b̄n+c̄nx

K(x)

)
(
x − x 2̂4̂

n

)(
x − 1

/
x 2̂4̂

n

)
]

. (E.7)

Then δp̂3, just as we saw for the su(2) solution, is the analytical continuation of δp̂2 through
the cut. In simpler terms, it corresponds to a simple change of sign of K(x) in the above
expression. Finally, δp̂1,4(x) = −δp̂2,3(1/x).

The undetermined coefficients are fixed by the residues

res
x=x 1̂3̂

n

p̂1,3 = ±α
(
x 1̂3̂

n

)
N 1̂3̂

n , res
x=x 1̂3̂

n

p̂2,4 = 0,

res
x=x 2̂4̂

n

p̂2,4 = ±α
(
x 2̂4̂

n

)
N 2̂4̂

n , res
x=x 2̂4̂

n

p̂1,3 = 0

to be

an = −1, bn = C
2nx 1̂3̂

n + kK
(
x 1̂3̂

n

)
k
(
x 1̂3̂

n + C
) , cn = kK

(
x 1̂3̂

n

) − 2Cn

k
(
C + x 1̂3̂

n

)
ān = 1, b̄n = C

2nx 2̂4̂
n + kK

(
x 2̂4̂

n

)
k
(
x 2̂4̂

n + C
) , c̄n = kK

(
x 2̂4̂

n

) − 2Cn

k
(
C + x 2̂4̂

n

) .

Hence, with the level matching condition∑
n

(
N 1̂3̂

n + N 2̂4̂
n

)
n = 0,

we find, from the large x behavior, the energy shift (E.5).
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E.2. The S5 excitations

The S5 quasi-momentum (E.1) has no branch cuts and thus δp̃i will be of the same form as
we found for the BMN string except that the position of the roots, found from (178), is now
given by

x̃n ≡ x 1̃3̃
n = x 1̃4̃

n = x 2̃3̃
n = x 1̃4̃

n = J +
√
J 2 + (n + m)2 − m2

n
(E.8)

instead of (186). The explicit expressions for δp̃i are given in (E.10). This perturbation shifts
the residues at ±1 from

π (J ∓ m)

to some other values, which we parameterize by

π(J + δJ eff ∓ (m + δmeff)).

The precise expressions for these shifts can be found in (E.10) and (E.11). But then, since the
AdS5 quasi-momenta only know about the S5 sector through the residues at these points, the
perturbed quasi-momenta p̂i + δp̂i will be given by the same expression (E.2) with the trivial
replacement

J ,m → J + δJ eff,m + δmeff .

The same is true for the energy given in (E.3) so that—see appendix D.2 for details—we can
immediately find

δE = 1

κ

∑
n

(
N 1̃3̃

n + N 1̃4̃
n + N 2̃3̃

n + N 2̃4̃
n

)(√
(n + m)2 − m2 + J 2 − J

)
. (E.9)

E.2.1. The S5 excitations—details. As explained above, the perturbed S5 quasi-momenta
are of the BMN form (C.1) and (C.2):

δp̃2(x) = +
4π√

λ

x2

x2 − 1

∑
n

(
N 2̃3̃

n + N 2̃4̃
n

x̃n − x
+

N 1̃3̃
n + N 1̃4̃

n

x2x̃n − x

)

δp̃3(x) = − 4π√
λ

x2

x2 − 1

∑
n

(
N 1̃3̃

n + N 2̃3̃
n

x̃n − x
+

N 2̃4̃
n + N 1̃4̃

n

x2x̃n − x

)
,

where x̃n is given by (E.8). Then, in the notation introduced above, the shift in the x = ±1
residues is given by

δJ eff =
∑

n

(
N 1̃3̃

n + N 1̃4̃
n + N 2̃3̃

n + N 2̃4̃
n

)(
mn + J 2 − J

√
J 2 + n2 + 2mn

)
√

λ(m2 − J 2)
(E.10)

while δmeff is given by

J δmeff + δJ effm = 1√
λ

∑
n

(
N 1̃3̃

n + N 1̃4̃
n + N 2̃3̃

n + N 2̃4̃
n

)
n = 0 (E.11)

due to the Riemann condition. Then, from (E.3) and (197), we have

δE = w3 − kmJ
w2κ

δw = w(k2 + m2 + J 2) − 3kmJ
w2κ

δw

where, using (197) and (E.11), we have

δw = −δJ eff

J
w2(m2 − J 2)

w(k2 + m2 + J 2) − 3kmJ
so that δE will be given by (E.9).
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E.3. Fermionic excitations

The fermionic excitations can be treated as for the su(2) string. As before, we expect at
most two different answers for the energy shifts—one coming from the poles uniting the
(1̂3̃, 1̂4̃, 4̂1̃, 4̂2̃) sheets and the other coming from the poles uniting the (2̂3̃, 2̂4̃, 3̂1̃, 3̂2̃) sheets.
From the expressions in appendix C.3, we find

δ� =
∑

n

(
N 1̂3̃

n + N 1̂4̃
n + N 4̂1̃

n + N 4̂2̃
n

)
δ�(1)

n +
∑

n

(
N 2̂3̃

n + N 2̂4̃
n + N 3̂1̃

n + N 3̂2̃
n

)
δ�(2)

n , (E.12)

where

δ�(1)
n = (2m + k) − 2JC − kC2

k(C2 − 1)
(
C−1x 1̂3̃

n + 1
) +

n
(
C−1x 1̂3̃

n − 1
)

k
(
C−1x 1̂3̃

n + 1
) +

nw

kκ

δ�(2)
n = (2m − k)C2 − 2JC + k

k(C2 − 1)
(
Cx 2̂3̃

n + 1
) − n

(
Cx 2̂3̃

n − 1
)

k
(
Cx 2̂3̃

n + 1
) +

nw

kκ

with the position of the fermionic poles being given by (178), in terms of the algebraic curve
for the classical solution.

E.3.1. Fermionic excitations—details. The S5 part of the quasi-momenta is given by

p̃2(x) = +
4πx√

λ(x2 − 1)

∑
n

(
N 3̂1̃

n + N 4̂1̃
n

xx 3̂1̃
n − 1

− x
N 3̂2̃

n + N 4̂2̃
n

x − x 3̂1̃
n

)

p̃3(x) = − 4πx√
λ(x2 − 1)

∑
n

(
N 1̂4̃

n + N 2̂4̃
n

xx 3̂1̃
n − 1

− x
N 1̂3̃

n + N 2̂3̃
n

x − x 3̂1̃
n

)

whereas the AdS5 part is more complicated. Parameterizing δp̂ as we did for the su(2) string
in (192), we have

f (x) = x

x2 − 1

∑
n

(
x

N 2̂3̃
n + N 2̂4̃

n − N 3̂1̃
n − N 3̂2̃

n

x − x 2̂3̃
n

+
N 2̂3̃

n + N 2̂4̃
n − N 3̂1̃

n − N 3̂2̃
n

xx 2̂3̃
n − 1

)

g(x) = x

x2 − 1

∑
n

([
xK

(
x 2̂3̃

n

)
x − x 2̂3̃

n

+ anx + bn

] (
N 2̂3̃

n + N 2̂4̃
n + N 3̂1̃

n + N 3̂2̃
n

)

−
[

xx 1̂3̃
n K(1/x 1̂3̃

n )

xx 1̂3̃
n − 1

+ ānx + b̄n

] (
N 1̂3̃

n + N 1̂4̃
n + N 4̂1̃

n + N 4̂2̃
n

))
,

where the remaining constants are given by

an = C
(C2 − 1)(k − 2n)x 2̂3̃

n + 2Cm − 2J
(C2 − 1)

(
Cx 2̂3̃

n + 1
)
k

ān = C
(C2 − 1)k − 2(m + n) + 2C(Cn + J )

(C2 − 1)
(
C + x 1̂3̃

n

)
k

bn = C
(C2 − 1)k − 2C2(m + n) + 2(n + CJ )

(C2 − 1)
(
C + x 2̂3̃

n

)
k

b̄n = −C
(C2 − 1)(k + 2n)x 1̂3̃

n + 2Cm − 2C2J
(C2 − 1)

(
C + x 1̂3̃

n

)
k

.

Then the energy shifts can be read from the large x asymptotics and are given in (E.12).
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Appendix F. Ambiguities due to shifts

To compute the one-loop shift, one must sum all frequencies. This sum, however, is sensitive
to the way the frequencies are labeled. Let us demonstrate this on a simple example. Consider
the sum

1

2

∞∑
n=−∞

(2ωn − ωn+m − ωn−m)

with ωn = ω−n and assume that for a large mode number, ωn � |n| + · · ·. Naively this sum is
zero if m is an integer, since all terms cancel among each other if we allow the renumbering
of the terms. However, a more careful analysis shows that this is not the case:

1

2

N∑
n=−N

(2ωn − ωn+m − ωn−m) =
N∑

n=N−m+1

(ωn − ωn−m) = m2 + O (1/N) .

Thus, one should be very careful while calculating the one-loop shift with frequencies in hand
because ambiguities can easily arise. Consider, for example, the equation for the bosonic
frequencies for the general 3J solution [87]:

P
J1J2J3
8 (ω) = (ω2 − n2)4 − 4(ω2 − n2)2

3∑
i �=j

Ji

wi

(wjω − mjn)2

+ 8
3∑

i �=j �=k �=i

Ji

wi

(wjω − mjn)2(wkω − mkn)2 = 0.

This solution can be smoothly deformed to a general su(2) solution for which J3 → 0 while
preserving all constraints (6). In this limit, we find

P
J1J20
8 (ω) = P

su(2)
4 (ω)

(
(ω2 − n2)2 − 4

(
m3n − ω

√
m2

3 + ν2
)2)

,

where the quartic polynomial P
su(2)
4 (ω) is that appearing in table 3 and gives us the usual

su(2) modes whereas the remaining equations yield the frequencies√
(n + m3)2 + ν2 + w3,

√
(n − m3)2 + ν2 − w3

instead of the two
√

n2 + ν2 we read from table 3. From the above explanation, this ambiguity
converts into an extra contribution of m2

3

/
κ to the one-loop shift.

Moreover, we also found contradictory results in the literature. For the simple su(2)

solution, in [86, 91, 92] the sum over fermionic frequencies ωF
n is taken over the integers for

even m and over Z + 1/2 for odd m while in [39, 55] the sum always goes over the integers.
We found that the fermions will indeed be summed over integer n’s. The same kind of
mismatch appears for the sl(2) circular string. For example, in [39, 58, 61, 88] the fermionic
frequencies ωF

n are summed with n integer whereas we found ωF
n+m/2−k/2 and ωF

−n−m/2−k/2,
that is, the frequencies have half-integer arguments if m + k is odd—see (199). In view of
these discrepancies, we also repeated the calculation for the frequencies directly from the
expansion of the string action using a coset representative parameterized as in [11]. We also
found the same kind of field redefinitions which are trivially related to the R and Q matrices
written in section 3.2. For the simple su(2) solution, the field redefinitions always leave the
fermions periodic whereas for the sl(2) string they are periodic (anti-periodic) for m + k even
(odd) in agreement with the calculation presented in this paper. Shifts changing integers into
half-integers are no longer related by the simple expressions of form m2/κ like in the previous
example. However, the sum over fermions can be replaced by an integral with exponential
precision and therefore these shifts may end up being not so harmful.
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Appendix G. Large N limit

In the x plane, the contour in figure 4(a) is mapped to that in figure 4(b). For large N, the
contour starts at −1 − ε

ij
− (N) and ends at +1 + ε

ij
+ (N). In this appendix, we perform a careful

analysis of the large N limit.

G.1. Asymptotics of quasi-momenta and expansion of xn

Let us take η = 1 and use notations (47). Large n’s are mapped to the vicinity of ±1 where

p̂2 � +
α±

x ∓ 1
+
∑
n=0

â±
n (x ∓ 1)n, p̃2 � +

α±
x ∓ 1

+
∑
n=0

ã±
n (x ∓ 1)n,

p̂3 � − α±
x ∓ 1

+
∑
n=0

b̂±
n (x ∓ 1)n, p̃3 � − α±

x ∓ 1
+
∑
n=0

b̃±
n (x ∓ 1)n.

The remaining quasi-momenta are fixed by the x → 1/x symmetry:

p̃1,2(x) = −2πm − p̃2,1(1/x)

p̃3,4(x) = +2πm − p̃4,3(1/x) (G.1)

p̂1,2,3,4(x) = −p̂2,1,4,3(1/x).

From this expansion, we can read the large n behavior of x
ij
n defined by (5). Let us,

however, use a more general definition

pi

(
xij

n

) − pj

(
xij

n

) = 2π(n − mi + mj). (G.2)

For n → ±∞, all x
ij
n are close to ±1 and we find

xij
n = ±1 +

α±

πn
+ O(1/n2), (G.3)

where we note that the first 1/n coefficient is universal and fixed uniquely by the residues of
the quasi-momenta.

G.2. Large N versus ε regularization

The main goal of this appendix is to justify the integration path used in the main text where for
all ij , the integral in the x plane starts from −1−ε and ends at 1+ε as depicted in figure 20(b).
However, by definition (205) we have to start from the large N regularization. These two
regularizations, in principle, are not equivalent, since x

ij

N ’s are not exactly equal for all ij and
thus we should calculate the difference between both regularizations. In particular in (239),
we will have slightly different contours of integrations after replacement of cot’s by sign.
One would like to make all the contours to be the circle of the radius 1 + ε. However, while
changing the contours of integration one will get some unwelcome contributions proportional
to (

1

α+
− 1

α−

)
(m + m1̂ + m2̂ − m1̃ − m2̃)(m + m3̃ + m4̃ − m3̂ − m4̂).

Fortunately it is possible to choose mi in such a way that it is always zero, and this
transformation is possible. For example,

m1̃ = m, m4̃ = −m (G.4)

and all the other mi are zero. This amounts to some prescription for the mode numbers. For
obvious reasons, let us denote it by the Bethe ansatz friendly prescription. In contrast to what
we had in section 3, we have no obvious argument in favor of this new prescription. For the
sl(2) and su(2) one-cut solutions, this prescription gives the same result (with exponential
precision in large J ) as in [58, 61, 85–88].
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Appendix H. Derivation of the AFS formula for asymptotic string BAEs

In this appendix, we evaluate integral (297) and obtain the AFS BAE.
We can simplify expression for H(x) (292) assuming that in (295) P = 0:

H(x) = −4πm +
�

M

x

x2 − 1
+ 2i

∑
j

log
y+

j x − 1

y−
j x − 1

. (H.1)

We rewrite (297) in the x variable:

ipk = −M

2

∮
i

2π
(H(x) − H(1/x))

(
log

x − y+
k

x − y−
k

+ log
x − 1

/
y+

k

x − 1
/
y−

k

)(
1 − 1

x2

)
dx, (H.2)

where the contour goes in the counterclockwise direction around the unit circle, y±
k = X

(
w±

k

)
.

Note that terms with H(1/x) are equal to those with H(x) after a change of the variable
x → 1/x so that

ipk = M

∮
H(x)

(
log

x − y+
k

x − y−
k

+ log
x − 1

/
y+

k

x − 1
/
y−

k

)(
x2 − 1

x2

)
dx

2π i
. (H.3)

Various terms are

I1 ≡
∮ (

−4πm +
�

M

x

x2 − 1

)
log

x − y+
k

x − y−
k

(
x2 − 1

x2

)
dx

2π i
(H.4)

I2 ≡
∮ (

−4πm +
�

M

x

x2 − 1

)
log

x − 1
/
y+

k

x − 1
/
y−

k

(
x2 − 1

x2

)
dx

2π i
(H.5)

I3 ≡ 2i
∮

log
y+

j x − 1

y−
j x − 1

log
x − y+

k

x − y−
k

(
x2 − 1

x2

)
dx

2π i
(H.6)

I4 ≡ 2i
∮

log
y+

j x − 1

y−
j x − 1

log
x − 1

/
y+

k

x − 1
/
y−

k

(
x2 − 1

x2

)
dx

2π i
. (H.7)

Integral I1 can be calculated by residue in x = 0, since |y±
k | > 1:

I1 = �

M
log

y+
k

y−
k

− 4πm

(
1

y+
k

− 1

y−
k

)
. (H.8)

Similar I2 and I4 are given by residue at infinity:

I2 = 4πm

(
1

y+
k

− 1

y−
k

)
(H.9)

I4 = −2i

(
1

y+
k

− 1

y−
k

)
log

y+
j

y−
j

. (H.10)

Calculation of I3 is slightly more difficult. One can differentiate it with respect to y+
j to kill

one of the logarithms and then calculate it by poles at x = 0:

∂y+
j
I3 = 2i log

y+
k

y−
k

+ 2i

(
1

y+
j

2 − 1

)
log

y+
k y+

j − 1

y−
k y+

j − 1
, I3 =

∫ y+
j

y−
j

∂y+
j
I3dy+

j ; (H.11)
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thus,

I3 = 2i
uj − uk

M
log

(
y+

j y−
k − 1

)(
y−

j y+
k − 1

)(
y+

j y+
k − 1

)(
y−

j y−
k − 1

) +
2

M
log

y−
j y+

k − 1

y+
j y−

k − 1

+ 2i

((
y+

j − y−
j

)
log

y+
k

y−
k

− (
y+

k − y−
k

)
log

y+
j

y−
j

)
. (H.12)

Finally,

ipk = M

4∑
a=1

Ia = L log
y+

k

y−
k

+
∑

j

(
2 log

1 − 1
/
y−

j y+
k

1 − 1
/
y+

j y−
k

+ 2i(uj − uk) log

(
y+

j y−
k − 1

)(
y−

j y+
k − 1

)(
y+

j y+
k − 1

)(
y−

j y−
k − 1

)
)

; (H.13)

thus, we prove (298) assuming P = 0. This immediately leads to the AFS BAE (299).
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